Biorefinery for the Production of Biodiesel, Hydrogen and Synthesis Gas Integrated with CHP from Oil Palm in Malaysia

2016 ◽  
Vol 11 (4) ◽  
pp. 305-314 ◽  
Author(s):  
Bamidele V. Ayodele ◽  
Chin Kui Cheng

Abstract Malaysia is presently the world’s largest exporter of palm oil with total production of 19.22 million tonnes of crude palm oil (CPO) in 2013. Aside CPO, by-products such as empty fruit bunch (EFB), palm kernel shell (PKS), palm kernel oil (PKO), palm kernel cake (PKC) and pressed palm fibres (PPF) are produced from the palm oil mills. These biomasses can be used as potential feedstock for the production of biofuels, biogas and bioelectricity. One of the ways to fully harness the potentials of these biomasses is by employing the biorefinery concepts where all the products and by-products from oil palm are utilized for production of valuable bio-products. In this study, technological feasibility of biorefinery for the production of biodiesel, hydrogen, Fischer-Tropsch liquids (FTLs) integrated with combined heat and power (CHP) generation was investigated. Flowsheet was designed for each of the processes using Aspen HYSYS® v 8.0. Material balance was performed on a palm oil mill processing 250 tonnes per year of fresh fruit palm (FFP). Results from the material balance shows that 45.1 tonnes of refined bleached deodorized palm oil (RDBPO) and 52.4 tonnes of EFB were available for the production of biodiesel, hydrogen, FTLs and the CHP generation. The annual plant capacity of the biodiesel production is estimated to be 26,331.912 tonnes. The overall energy consumption of the whole process was estimated to be 36.0 GJ/h. This energy demand was met with power generated from the CHP which is 792 GJ/h leaving a surplus of 756 GJ/h that can be sold to the grid. The process modelling and simulation of the biorefinery process shows technological feasibility of producing valuable products from oil palm.

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


2019 ◽  
Vol 28 (4) ◽  
pp. 189
Author(s):  
Simon Petrus Ginting ◽  
K Simanihuruk ◽  
A Tarigan ◽  
K R Pond

Biomass by-products or plant residues from the plantation system would play a crucial role in animal production since the utilization of forages from the underneath tree crops would be less or minimal when the palm oil crop mature. By-products generated from the palm oil system vary, but in relation to the animal production they could be generally categorized into the fibrous by-products and the non-fibrous (concentrate) by-products. Palm oil mill effluent (POME) and palm kernel cake (PKC) are concentrate by-products produced during the processing of palm oil extraction which have great potency to support sheep and goat production, although limiting factors such as contamination of shell and high copper level in PKC need to be considered in their utilization as feed. The fibrous palm oil by-products include oil palm fronds (OPF) and oil palm trunk (OPT) generated from the palm crop trees and oil palm empty fruit bunch (OPEFB) and palm pressed fiber (PPF) generated from processing of fresh fruits to yield crude oil. These fibrous by-products cannot meet the metabolisable energy required for high growth rate and for lactation of sheep and goats due to low DM digestibility, low crude protein content, low fermentable carbohydrate and low level of intake. Limited inclusion level in ration should be applied for those by-products to yield an acceptable production level of sheep and goats. Pretreatments (physical, chemical, and biological) gave some improvement in their nutritional qualities, however additional cost of pretreatments need to be considered. In the future, there would be a great challenge for the utilization of those fibrous by-products as animal feed since bioconversion of lignocellulosic materials to products such as chemicals (bioethanol, sugar, and bioplastic), fuels, and organic fertilizers are receiving greater interest. Some comparative advantages of these natural wastes are their relatively low cost, renewable and widespread in nature for used in an industrial operation.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Habeeb Lateef Muttashar ◽  
M. W. Hussin ◽  
Jahanger Mirza ◽  
Ghasan Fahim Huseien

This paper represents the effects of using waste generated from palm oil industries like ash, shell and fibre on the engineering properties of mortar. Palm Oil Fuel Ash (POFA) was used as cement replacement up to 60% and Oil Palm Kernel Shell (OPKS) as sand replacement in mortar mixture. The Oil Palm Fibre was added to increase the strengthening performance of mortar. The method used to find the water binder ratio was by trial and error method with 1:3 ratio of cement to sand. The cubes size of 70mm x 70mm x 70mm, beams size of 40mm x 40mm x 160mm, and cylinders size of 70mm diameter and 150mm height, were cast and tested for compressive strength, flexural strength and splitting tensile strengths of mortar. Samples were cured in water before testing it at 7, 28, and 60 days. Also, the water absorption of mortar was tested at the age of 28 days. The results showed that oil palm fibre provided more advantages and increase the strength properties especially in the flexural and tensile strength. The addition of Oil Palm Kernel Shell reduced the density of mortar and it can be used for lightweight application.  The test results also showed that as the POFA ratio increased, the compressive strength of mortar decreased. However, as OPKS ratio increased, the density was found to be decreased. The mix proportions using 60% POFA and 20% OPKS was considered as the optimum mix design. The mortar showed optimum strength at 9% with the addition of fibre.


2008 ◽  
Vol 86 (6) ◽  
pp. 533-539 ◽  
Author(s):  
Yik-Kang Kek ◽  
Wing-Hin Lee ◽  
Kumar Sudesh

Efficient bioconversion of palm oil by-products to green materials serves as a prominent way to overcome wastage. Generally, major palm oil by-products such as palm acid oil (PAO) and palm kernel acid oil (PKAO) are used for animal feed. This pioneer study investigated the ability of Cupriavidus necator H16 (ATCC 17699) (formerly Ralstonia eutropha) to biologically convert these by-products to poly(3-hydroxybutyrate) [P(3HB)]. P(3HB) was synthesized when PAO or PKAO was fed as the sole carbon source. However, it was found that PKAO is superior with respect to higher amount of P(3HB) accumulation in 48 h (85 wt% of the dry cell mass). In addition, important culture parameters were identified, such as nitrogen sources and ratio of culture volume to flask volume, which significantly affected the P(3HB) content. The nitrogen concentration in the culture medium is very crucial in promoting the biosynthesis of P(3HB). The highest P(3HB) yield (3.1 g/L) was initiated at 4 mmol/L of urea. Less than 0.4 g/L of P(3HB) was obtained when 30.0 mmol/L or higher urea concentrations were used. This study has identified a suitable process to produce high P(3HB) yield from major palm oil by-products. It is also demonstrated that C. necator H16 has suitable metabolic pathways that allow the conversion of palm oil by-products to P(3HB) effectively. Hereby, surplus palm oil by-products can be converted to a relatively high-value and sustainable product.Key words: poly(3-hydroxybutyrate), palm oil, palm acid oil, palm kernel acid oil, Cupriavidus necator.


2020 ◽  
Vol 11 (3) ◽  
pp. 10148-10160

Oil palm (Elaeis guineensis Jacq) is a part of the family of Arecaceae, which originated from West Africa. Oil palm can be grown in the tropics of Asia, Africa, and Central and South America. Palm oil produces two types of oil: Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). Indonesia’s CPO production reaches 49 million tonnes in 2020. This production produces around 35-40% of waste. Fresh Fruit Bunch (FFB) is extracted into Crude Palm Oil (CPO) and Palm Kernel Oil (PKO), which produce waste such as Palm Oil Mill Effluent (POME), Empty Fruit Bunch (EFB), Mesocarp Fiber (MF), Palm Kernel Shell (PKS) and Palm Kernel Meal (PKM). Palm oil production increases every year, which causes the waste from the industry to increase too. Palm oil waste still has chemical content that is good enough to be utilized. The study was conducted online at Google Scholar and PubMed by reviewing literature from domestic and international journals and research reports. The results showed that each waste contains different content, including carbohydrates, protein, fat, lignin, cellulose, mannose, and others. This waste has also been used in various fields. This waste has also been used for livestock, fuel, and raw materials.


This chapter discusses the utilization of wastes in the form of palm oil fuel ash, oil palm kernel shell, and oil palm fibre in the production of mortar mixes as a part of new and innovative materials in construction industry. Detailed introduction is provided followed by a clear description of each waste and its effect when added to mortar mixes. Furthermore, a research study on the effect of palm oil fuel ash, palm oil kernel shell, palm oil fibre on mortar properties was carried out and the experimental program details are given under four subtitles. Splitting tensile strength and flexural strength were performed to test the engineering properties of mortar containing different types of waste. Results and discussion are provided for additional grasp. It is concluded that the inclusion of high-volume palm oil biomass waste can produce sustainable mortars with high strength and with more durability performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Mohamed Gibigaye ◽  
Fructueux Gildas Godonou ◽  
Crespin Prudence Yabi ◽  
Gerard Degan

Despite its importance as one of the key parameters in the design of structural elements, the modulus of elasticity (MoE) is one of the least researched areas in oil palm kernel shell (OPKS) concrete. In the present study, we determined the MoE of OPKS concrete, using micromechanical models based on the classic approaches of homogenisation of Hashin–Shtrikman (HS) and Mori–Tanaka (MT). The MoE values for OPKSC (fcu < 35 MPa and OPKS volume fraction < 42%) estimated using the HS and MT models in the literature showed a good correlation with the experimental values. An empirical linear correlation between the volume fraction of inclusions and the MoE was proposed. The results obtained can enable better control of the mix design of structural concrete based on the proportion of OPKS coarse aggregate in tropical countries producing palm oil.


RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 27183-27193
Author(s):  
Rose Fadzilah Abdullah ◽  
Umer Rashid ◽  
Yun Hin Taufiq-Yap ◽  
Mohd Lokman Ibrahim ◽  
Chawalit Ngamcharussrivichai ◽  
...  

The potential of bifunctional nanocatalysts obtained from waste palm kernel shell (PKS) was investigated for one-step transesterification–esterification under mild conditions.


Sign in / Sign up

Export Citation Format

Share Document