Dosage and pH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: The influence of basicity

Author(s):  
Chang Tian ◽  
Yan-Xia Zhao
Hydrobiologia ◽  
2013 ◽  
Vol 727 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Jia Yang ◽  
Xiru Deng ◽  
Qiming Xian ◽  
Xin Qian ◽  
Aimin Li

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 124 ◽  
Author(s):  
Adogbeji Valentine Agberien ◽  
Banu Örmeci

Management of cyanobacteria blooms and their negative impact on human and ecosystem health requires effective tools for monitoring their concentration in water bodies. This research investigated the potential of derivative spectrophotometry in detection and monitoring of cyanobacteria using toxigenic and non-toxigenic strains of Microcystis aeruginosa. Microcystis aeruginosa was quantified in deionized water and surface water using traditional spectrophotometry and the first derivative of absorbance. The first derivative of absorbance was effective in improving the signal of traditional spectrophotometry; however, it was not adequate in differentiating between signal and noise at low concentrations. Savitzky-Golay coefficients for first derivative were used to smooth the derivative spectra and improve the correlation between concentration and noise at low concentrations. Derivative spectrophotometry improved the detection limit as much as eight times in deionized water and as much as four times in surface water. The lowest detection limit measured in surface water with traditional spectrophotometry was 392,982 cells/mL, and the Savitzky-Golay first derivative of absorbance was 90,231 cells/mL. The method provided herein provides a promising tool in real-time monitoring of cyanobacteria concentrations and spectrophotometry offers the ability to measure water quality parameters together with cyanobacteria concentrations.


1992 ◽  
Vol 57 (3) ◽  
pp. 866-872 ◽  
Author(s):  
Michio Namikoshi ◽  
Kenneth L. Rinehart ◽  
Ryuichi Sakai ◽  
Richard R. Stotts ◽  
Andrew M. Dahlem ◽  
...  

2021 ◽  
Author(s):  
Ahmed Sidi Sadegh ◽  
Zeinebou Sidoumou ◽  
Mamadou Dia ◽  
Juan Luis Gómez Pinchetti ◽  
Noureddine Bouaïcha

Abstract This work was carried out to study the seasonal occurrence of cyanobacteria and their microcystin-LR in water column of Foum-Gleita reservoir (Mauritania). Limnological and biological factors were investigated at three depths (surface, -3, and -6 m) in this reservoir during a full year. Nutrients were analyzed by Spectrophotometry, phytoplankton was analyzed by Inverted Microscopy, microsystins were analyzed by High Performance Liquid Chromatography-tandem Mass Spectrometry and environmental factors relationships were analyzed by Pearson's correlation and Multiple Linear Regression. Physicochemical analyzes have shown that this reservoir is hypereutrophic with dissolved inorganic nitrogen and total phosphorus concentrations relatively high, varying from 1.39 to 6.53 and 0.21 to 0.57 mg/L, respectively. Annual surface water temperature was exceptionally high (27.8 ± 3.6°C), characterizing of a Sahelian climatic conditions. Phytoplankton analyzes have shown dominance of two toxic cyanobacteria species Microcystis aeruginosa and Dolichospermum flos-aquae during warm season (May-September). Microcystins analysis revealed presence of only most toxic variant, microcystin-LR. Microcystin-LR concentration in the surface water samples, during cyanobacterial blooms, was consistently high (5.638 µg/L), exceeding 5-times the World Health Organization drinking water limit (1 µg/L), however, it was much lower (0.83 µg / L) at depth (-6 m). Analysis of environmental factors relationships showed that the most influential factors on abundance of Microcystis aeruginosa and Dolichospermum flos-aquae and variability of microcystin-LR concentrations were total phosphorus, dissolved inorganic nitrogen, iron, temperature and pH. Finally, the study clearly demonstrated need for regular monitoring of cyanobacteria and cyanotoxins in the waters of studied reservoir.


Author(s):  
John M. Wehrung ◽  
Richard J. Harniman

Water tables in aquifer regions of the southwest United States are dropping off at a rate which is greater than can be replaced by natural means. It is estimated that by 1985 wells will run dry in this region unless adequate artificial recharging can be accomplished. Recharging with surface water is limited by the plugging of permeable rock formations underground by clay particles and organic debris.A controlled study was initiated in which sand grains were used as the rock formation and water with known clay concentrations as the recharge media. The plugging mechanism was investigated by direct observation in the SEM of frozen hydrated sand samples from selected depths.


Sign in / Sign up

Export Citation Format

Share Document