scholarly journals Monitoring of Cyanobacteria in Water Using Spectrophotometry and First Derivative of Absorbance

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 124 ◽  
Author(s):  
Adogbeji Valentine Agberien ◽  
Banu Örmeci

Management of cyanobacteria blooms and their negative impact on human and ecosystem health requires effective tools for monitoring their concentration in water bodies. This research investigated the potential of derivative spectrophotometry in detection and monitoring of cyanobacteria using toxigenic and non-toxigenic strains of Microcystis aeruginosa. Microcystis aeruginosa was quantified in deionized water and surface water using traditional spectrophotometry and the first derivative of absorbance. The first derivative of absorbance was effective in improving the signal of traditional spectrophotometry; however, it was not adequate in differentiating between signal and noise at low concentrations. Savitzky-Golay coefficients for first derivative were used to smooth the derivative spectra and improve the correlation between concentration and noise at low concentrations. Derivative spectrophotometry improved the detection limit as much as eight times in deionized water and as much as four times in surface water. The lowest detection limit measured in surface water with traditional spectrophotometry was 392,982 cells/mL, and the Savitzky-Golay first derivative of absorbance was 90,231 cells/mL. The method provided herein provides a promising tool in real-time monitoring of cyanobacteria concentrations and spectrophotometry offers the ability to measure water quality parameters together with cyanobacteria concentrations.

Author(s):  
Amitesh Malhotra ◽  
Banu Örmeci

Abstract Effective monitoring tools and methods are needed for the early detection and management of cyanobacteria in water bodies to minimize their harmful impacts on the environment and public health. This research investigated changing the cuvette pathlength (10-, 50-, and 100-mm) to improve the detection of cyanobacteria using UV-Vis spectrophotometry with subsequent application of derivative spectrophotometry and Savitzky-Golay (S-G) transformation. A non-toxigenic strain of blue-green cyanobacteria, Microcystis aeruginosa (CPCC 632), and a green algae strain for comparison, Chlorella vulgaris (CPCC 90), were studied in a wide range of concentrations (955,000–1,855 cells/mL). In each concentration range, method detection limits were established with absorbance measurements and S-G first derivative of absorbance using 10-, 50-, and 100-mm cuvette pathlengths. Increasing the cuvette pathlength from 10 to 100 mm resulted in a 15-fold improvement in sensitivity with absorbance and a 13-fold improvement with S-G first derivative of absorbance for M. aeruginosa. Overall, adoption of 100 mm pathlength and application of S-G derivative spectra improved the method detection limit for M. aeruginosa from 337,398 cells/mL to 4,916 cells/mL, which is below the WHO guideline for low probability of adverse health effects (<20,000 cells/mL). Similarly, the detection limit for C. vulgaris was improved from 650,414 cells/mL to 11,661 cells/mL. The results also showed that spectrophotometry could differentiate M. aeruginosa from C. vulgaris based on the variations in their pigment absorbance peaks.


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


2021 ◽  
Vol 22 (3) ◽  
pp. 1196
Author(s):  
Javier Vicente ◽  
Fernando Calderón ◽  
Antonio Santos ◽  
Domingo Marquina ◽  
Santiago Benito

The surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non-Saccharomyces yeasts such as Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, and Pichia kluyveri have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non-Saccharomyces species. P. kluyveri stands out, mainly due to its contribution to wine aroma, glycerol, ethanol yield, and killer factor. The metabolism of the yeast allows it to increase volatile molecules such as esters and varietal thiols (aroma-active compounds), which increase the quality of specific varietal wines or neutral ones. It is considered a low- or non-fermentative yeast, so subsequent inoculation of a more fermentative yeast such as Saccharomyces cerevisiae is indispensable to achieve a proper fermented alcohol. The impact of P. kluyveri is not limited to the grape wine industry; it has also been successfully employed in beer, cider, durian, and tequila fermentation, among others, acting as a promising tool in those fermentation processes. Although no Pichia species other than P. kluyveri is available in the regular market, several recent scientific studies show interesting improvements in some wine quality parameters such as aroma, polysaccharides, acid management, and color stability. This could motivate yeast manufacturers to develop products based on those species in the near future.


2011 ◽  
Vol 15 (9) ◽  
pp. 2763-2775 ◽  
Author(s):  
A. Bárdossy

Abstract. For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensitivity of the measuring device (detection limit). These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including taking those values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset by progressive decimation. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.


2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2007 ◽  
Vol 73 (21) ◽  
pp. 6864-6869 ◽  
Author(s):  
Diana Axelsson-Olsson ◽  
Patrik Ellstr�m ◽  
Jonas Waldenstr�m ◽  
Paul D. Haemig ◽  
Lars Brudin ◽  
...  

ABSTRACT In this study, we present a novel method to isolate and enrich low concentrations of Campylobacter pathogens. This method, Acanthamoeba-Campylobacter coculture (ACC), is based on the intracellular survival and multiplication of Campylobacter species in the free-living protozoan Acanthamoeba polyphaga. Four of the Campylobacter species relevant to humans and livestock, Campylobacter jejuni, C. coli, C. lari, and C. hyointestinalis, were effectively enriched by the coculture method, with growth rates comparable to those observed in other Campylobacter enrichment media. Studying six strains of C. jejuni isolated from different sources, we found that all of the strains could be enriched from an inoculum of fewer than 10 bacteria. The sensitivity of the ACC method was not negatively affected by the use of Campylobacter-selective antibiotics in the culture medium, but these were effective in suppressing the growth of seven different bacterial species added at a concentration of 104 CFU/ml of each species as deliberate contamination. The ACC method has advantages over other enrichment methods as it is not dependent on a microaerobic milieu and does not require the use of blood or other oxygen-quenching agents. Our study found the ACC method to be a promising tool for the enrichment of Campylobacter species, particularly from water samples with low bacterial concentrations.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 257-264 ◽  
Author(s):  
A. Dietze ◽  
R. Gnirß ◽  
U. Wiesmann

Surface waters are often burdened with inflows of low quality water, so that drinking-water production, swimming or ground water charging must be restricted. To ensure the long-term use of such surface water it is necessary to treat the influents or the water used for ground water charging. The current treatment process for phosphorus and turbidity removal is a process combination called floc filtration. By using this conventional method it is possible to reduce the dissolved ortho-phosphate and the turbidity (particulate phosphorus) as well as the amounts of algae and pathogenic organisms to very low concentrations. The high degree of reduction is only achieved by a relatively high dosage of chemicals. A comparison will be made between this process, which represents the state-of-the-art, and the combination of precipitation/coagulation with micro-/ultrafiltration in dead-end filtration mode.


1988 ◽  
Vol 34 (2) ◽  
pp. 416-418 ◽  
Author(s):  
C L Cambiaso ◽  
D Collet-Cassart ◽  
M Lievens

Abstract We describe here a nonisotopic immunoassay, based on particle-counting technology, for the determination of urinary albumin. The assay takes only 35 min and has been fully automated on the IMPACT (Acade Diagnostic Systems, Brussels, Belgium) machine. The system measures albumin within a linear range between 6.25 and 50 mg/L and has a detection limit of 0.4 mg/L. Analytical recoveries at three concentrations ranged between 96% and 102%. Within-run precision ranged from 1.6% to 9.5%. The method was compared with a commercial nephelometric immunoassay system and a correlation coefficient of 0.996 was found for 216 urine samples. No antigen excess affects the shape of the curve in our system, whereas in nephelometry a 3 g/L solution of albumin starts to decrease the dose-response curve.


Sign in / Sign up

Export Citation Format

Share Document