Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption

2021 ◽  
Vol 43 ◽  
pp. 102221
Author(s):  
Mariana Mariana ◽  
Abdul Khalil H.P.S. ◽  
E.M. Mistar ◽  
Esam Bashir Yahya ◽  
Tata Alfatah ◽  
...  
2018 ◽  
Vol 15 (1) ◽  
pp. 71
Author(s):  
Nurlisa Kartikasari ◽  
Rakhmawati Farma ◽  
Awitdrus Awitdrus

The percentage of KOH affects the quality of activated carbon. In this research the activated carbon has been made of biomass from rice husk by using the process carbonization, chemical activation using Potassium Hydroxide variated percentage for 5%, 10%, 15% and 20% from the mass of sample and microwave irradiation power by 450 Watt. The surface morphology of activated carbon for the sample KA10 produced the even pores structure and lots of pores more than sample KA5, KA15 and KA20. The analysis results of surface morphology of activated also supported by analysis atomic adsorption spectroscopy (AAS) show that sample KA10 has the highest heavy metal adsorption 92,40% for Ni, 91,31% for Pb and 70,24% for Zn.  


2019 ◽  
Vol 824 ◽  
pp. 114-120
Author(s):  
Chutima Khumnuan ◽  
Amornrat Moungon ◽  
Karine Mougin ◽  
Pornsawan Amornsakchai

Activated carbon can be prepared from any kind of hydrocarbon-based material, and that from agricultural wastes is attractive for many reasons. The use of natural fiber in various industries gives rise to some associated waste streams. In this work, activated carbon, produced from the non-fibrous material waste from pineapple leaf fiber production, was studied for its heavy metal adsorption behavior. The material was carbonized at different temperatures and chemical activation was carried out using phosphoric acid. Pore size and pore volume of the adsorbent were determined using the Brunauer–Emmett–Teller (BET) method, and surface morphology by scanning electron microscopy (SEM). Fourier Transform Infrared Spectrophotometry (FT-IR) was used to identify the functional groups in the material. It was found that the surface area, pore volume and morphology of the surface depended on the carbonization temperature. The best adsorbent was obtained using a carbonization temperature of 500 °C and an activation temperature of 600 °C. Adsorptions of several heavy metals were studied over the concentration range of 4 - 800 mg L−1 and pH 2-10. The optimum amount of the adsorbent was found to be 1.20 g per 100 ml of solution, removing up to 92.67% of lead ions. The adsorption behaviour was closer to the Freundlich isotherm than to the Langmuir isotherm. So this waste could be a useful bio-source for activated carbon production.


2015 ◽  
Vol 24 (12) ◽  
pp. 1601-1608
Author(s):  
Jun-Hee Lee ◽  
Seung-Chul Lee ◽  
Min Ju ◽  
Ji-Hye Kim ◽  
Don-Gil Lee

2019 ◽  
Vol 224 ◽  
pp. 373-387 ◽  
Author(s):  
Mohammadtaghi Vakili ◽  
Shubo Deng ◽  
Giovanni Cagnetta ◽  
Wei Wang ◽  
Pingping Meng ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Alcina Johnson Sudagar ◽  
Slávka Andrejkovičová ◽  
Fernando Rocha ◽  
Carla Patinha ◽  
Maria R. Soares ◽  
...  

Metakaolins (MKs) prepared from low-grade kaolins located in the Alvarães (A) and Barqueiros (B) regions of Portugal were used as the aluminosilicate source to compare their effect on the compressive strength and heavy metal adsorption of geopolymers. Natural zeolite, an inexpensive, efficient adsorbent, was used as an additive in formulations to enhance geopolymers’ adsorption capacities and reduce MK utilization’s environmental footprint. Geopolymers were synthesized with the replacement of MK by zeolite up to 75 wt.% (A25, B25—25% MK 75% zeolite; A50, B50—50% MK 50% zeolite; A75, B75—75% MK 25% zeolite; A100, B100—100% MK). The molar ratios of SiO2/Al2O3 and Na2O/Al2O3 were kept at 1 to reduce the sodium silicate and sodium hydroxide environmental impact. Geopolymers’ crystallography was identified using X-ray diffraction analysis. The surface morphology was observed by scanning electron microscopy to understand the effect of zeolite incorporation. Chemical analysis using X-ray fluorescence spectroscopy and energy dispersive X-ray spectroscopy yielded information about the geopolymers’ Si/Al ratio. Compressive strength values of geopolymers obtained after 1, 14, and 28 days of curing indicate high strengths of geopolymers with 100% MK (A100—15.4 MPa; B100—32.46 MPa). Therefore, zeolite did not aid in the improvement of the compressive strength of both MK-based geopolymers. The heavy metal (Cd2+, Cr3+, Cu2+, Pb2+, and Zn2+) adsorption tests exhibit relatively higher adsorption capacities of Barqueiros MK-based geopolymers for all the heavy metals except Cd2+. Moreover, zeolite positively influenced divalent cations’ adsorption on the geopolymers produced from Barqueiros MK as B75 exhibits the highest adsorption capacities, but such an influence is not observed for Alvarães MK-based geopolymers. The general trend of adsorption of the heavy metals of both MK-based geopolymers is Pb2+ > Cd2+ > Cu2+ > Zn2+ > Cr3+ when fitted by the Langmuir isotherm adsorption model. The MK and zeolite characteristics influence geopolymers’ structure, strength, and adsorption capacities.


Sign in / Sign up

Export Citation Format

Share Document