Advanced wastewater treatment process using algal photo-bioreactor associated with dissolved-air flotation system: A pilot-scale demonstration

2022 ◽  
Vol 46 ◽  
pp. 102565
Author(s):  
Ahmad K. Badawi ◽  
Bushra Ismail ◽  
Oussama Baaloudj ◽  
Khaled Z. Abdalla
1995 ◽  
Vol 31 (3-4) ◽  
pp. 299-313 ◽  
Author(s):  
M. Viitasaari ◽  
P. Jokela ◽  
J. Heinänen

The suspended solids separation is an essential element in almost any wastewater treatment system. If sedimentation, dissolved air flotation and filtration are compared, flotation has both the largest operational ranges concerning influent suspended solids concentration and particle size, and load bearing capacities. When considering the suitability of flotation as a wastewater treatment process, important factors are the effluent and sludge qualities, operation and costs. To get a comprehensive conception of flotation, those factors are presented and discussed. Flotation is widely used in forest industry wastewater treatment, as well as in process water recirculation. It is also proven technology in foodstuff industry wastewater treatment. Several cases from both industries are presented.


2001 ◽  
Vol 43 (8) ◽  
pp. 83-90 ◽  
Author(s):  
A. C. Pinto Filho ◽  
C. C. Brandão

A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant ; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond.


2012 ◽  
Vol 66 (8) ◽  
pp. 1684-1690 ◽  
Author(s):  
Russell Yap ◽  
Michael Holmes ◽  
William Peirson ◽  
Michael Whittaker ◽  
Richard Stuetz ◽  
...  

Dissolved air flotation (DAF) incorporating filtration (DAFF) is used at the Bolivar wastewater treatment plant (WWTP) to polish lagoon effluent for reuse. Elevated algal populations are frequently experienced and can lead to increased coagulant requirements and process control issues. Streaming current detectors (SCDs) and a charge demand analyser (CDA) were used to monitor the full-scale plant. This was followed by an optimisation study using a pilot plant with a CDA. It was found that the normal operational charge demand range for DAF at Bolivar was between −46 and −40 μeq L−1. Decreasing the pH of coagulation reduced coagulant consumption and facilitated more sensitive CDA responses to changes in alum dose.


2001 ◽  
Vol 43 (8) ◽  
pp. 43-49 ◽  
Author(s):  
M. A. P. Raeli ◽  
M. Marchetto

This paper presents the results of an experimental investigation about the performance of a horizontal flow high-rate pilot scale Dissolved Air Flotation (HRDAF) unit containing inclined parallel plates for treating a coloured and low turbidity raw water. Experiments were performed with the DAF unit in order to verify the influence on flotation of : (i) the water velocity (Vh) between the plates, in the range 18 to 96.5 cm.min−1 with corresponding Reynolds numbers between 240 and 1060; (ii) the supplied air (S*) value ranging from 2.2 to 8.5 g of air/m3 of water ; (iii) the angle of the plates (60° or 70°). The best pilot plant operational condition was obtained applying only 4.0 g/m3 (S*) with Vh around 18 cm.min−1 for treatment of water coagulated with a Al2(SO4)3 dosage of 40 mg.l−1. In these conditions, the unit presented very good removal efficiencies of colour (90%, residual of 10 uC), turbidity (88%, residual of 0.8 NTU ) and TSS (94%, residual of 1.8 mg.l−1). Furthermore, the unit could operate at higher Vh values up to 76 cm.min−1 and still present good results. The DAF unit thus behaved as a high rate unit presenting good performance with low air requirement.


1999 ◽  
Vol 40 (8) ◽  
pp. 137-143 ◽  
Author(s):  
R. G. Penetra ◽  
M. A. P. Reali ◽  
E. Foresti ◽  
J. R. Campos

This paper presents the results of a study performed with a lab-scale dissolved-air flotation (LSDAF) unit fed with previously coagulated effluent from a pilot scale up-flow anerobic sludge blanket (UASB) reactor treating domestic sewage. Physical operational conditions for coagulation (rapid mix) and flocculation/flotation were maintained constant. Chemical (FeCl3) dosages ranged from 30 to 110 mg.l−1. The effect of pH was also verified in the range of 5.1 to 7.6 for each dosage. Best results were achieved for 65 mg.l−1 of FeCl3 and pH values between 5.3 and 6.1. For these conditions, the removal efficiencies obtained in the LSDAF unit were: between 87% and 91% for chemical oxygen demand (COD), between 95% and 96% for total phosphate (TP), 94% for total suspended solids (TSS), between 96% and 97% for turbidity (TU), between 90% and 93% for apparent color (AC) and more than 96% for sulfide (S). For the UASB-DAF system, global efficiencies would be around 98% for COD, 98% for TP, 98.4% for TSS, 99.3% for TU and 98% for AC. The stripped gases treatment is desirable.


Sign in / Sign up

Export Citation Format

Share Document