Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China

2020 ◽  
Vol 99 ◽  
pp. 105020
Author(s):  
Juan He ◽  
Xueyi Shi ◽  
Yangjun Fu ◽  
Ye Yuan
2021 ◽  
Vol 13 (19) ◽  
pp. 3966
Author(s):  
Baoan Hu ◽  
Zhijie Zhang ◽  
Hairong Han ◽  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
...  

Ecological engineering is a widely used strategy to address environmental degradation and enhance human well-being. A quantitative assessment of the impacts of ecological engineering on ecosystem services (ESs) is a prerequisite for designing inclusive and sustainable engineering programs. In order to strengthen national ecological security, the Chinese government has implemented the world’s largest ecological project since 1999, the Grain for Green Program (GFGP). We used a professional model to evaluate the key ESs in Lvliang City. Scenario analysis was used to quantify the contribution of the GFGP to changes in ESs and the impacts of trade-offs/synergy. We used spatial regression to identify the main drivers of ES trade-offs. We found that: (1) From 2000 to 2018, the contribution rates of the GFGP to changes in carbon storage (CS), habitat quality (HQ), water yield (WY), and soil conservation (SC) were 140.92%, 155.59%, −454.48%, and 92.96%, respectively. GFGP compensated for the negative impacts of external environmental pressure on CS and HQ, and significantly improved CS, HQ, and SC, but at the expense of WY. (2) The GFGP promotes the synergistic development of CS, HQ, and SC, and also intensifies the trade-off relationships between WY and CS, WY and HQ, and WY and SC. (3) Land use change and urbanization are significantly positively correlated with the WY–CS, WY–HQ, and WY–SC trade-offs, while increases in NDVI helped alleviate these trade-offs. (4) Geographically weighted regression explained 90.8%, 94.2%, and 88.2% of the WY–CS, WY–HQ, and WY–SC trade-offs, respectively. We suggest that the ESs’ benefits from the GFGP can be maximized by controlling the intensity of land use change, optimizing the development of urbanization, and improving the effectiveness of afforestation. This general method of quantifying the impact of ecological engineering on ESs can act as a reference for future ecological restoration plans and decision-making in China and across the world.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2658
Author(s):  
Rui Luo ◽  
Shiliang Yang ◽  
Yang Zhou ◽  
Pengqun Gao ◽  
Tianming Zhang

A key challenge to the sustainability and security of grassland capacity is the protection of water-related ecosystem services (WESs). With the change of land use, the supply of aquatic ecosystem services has changed, and the grassland-carrying capacity has been affected. However, the correlation mechanism between WESs and the grassland-carrying capacity is not clear. In this study, we used the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs) model to evaluate the impact of land-use change on WESs, and made a tradeoff analysis between WESs and grassland-carrying capacity. Considering that the Heihe River Basin (HRB) was an important grassland vegetation zone, which was a milestone for the development of animal husbandry in China, HRB was taken as a case. The main findings are as follows: (1) the spatial distribution of WESs shows the dissimilation rule, the upper reaches are the main water yield area, the soil retention is weakening in the middle and lower reaches, and the pollution has further increased in the middle and upper reaches. (2) The carrying capacity of animal husbandry decreased in the upper reaches, increased in Shandan County and Zhangye City in the middle reaches, and decreased sharply in other regions. (3) There was a positive correlation between the livestock-carrying capacity and nitrogen export in 2018, which was increasing. As the change of land use has changed the evapotranspiration structure, WESs have undergone irreversible changes. Meanwhile, the development of large-scale irrigated farmland and human activities would be the source of a further intensification of regional soil erosion and water pollution. Therefore, it is necessary to trade off the WESs and animal husbandry under land-use change. This paper revealed how WESs changed from 2000 to 2018, the characteristics of the changes in the spatial and temporal distribution, and the carrying capacity. It aims to provide a scientific basis for coordinating the contradiction between grassland and livestock resources, improving the regional ecological security situation, and carrying out ecosystem management.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 584 ◽  
Author(s):  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
Hairong Han

Ecosystem services (ES), defined as benefits provided by the ecosystem to society, are essential to human well-being. However, it remains unclear how they will be affected by land-use changes due to lack of knowledge and data gaps. Therefore, understanding the response mechanism of ecosystem services to land-use change is critical for developing systematic and sound land planning. In this study, we aimed to explore the impacts of land-use change on the three ecosystem services, carbon storage (CS), flood regulation (FR), and soil conservation (SC), in the ecological conservation area of Beijing, China. We first projected land-use changes from 2015 to 2030, under three scenarios, i.e., Business as Usual (BAU), Ecological Land Protection (ELP), and Rapid Economic Development (RED), by interactively integrating the Markov model (Quantitative simulation) with the GeoSOS-FLUS model (Spatial arrangement), and then quantified the three ecosystem services by using a spatially explicit InVEST model. The results showed that built-up land would have the most remarkable growth during 2015–2030 under the RED scenario (2.52% increase) at the expense of cultivated and water body, while forest land is predicted to increase by 152.38 km2 (1.36% increase) under the ELP scenario. The ELP scenario would have the highest amount of carbon storage, flood regulation, and soil conservation, due to the strict protection policy on ecological land. The RED scenario, in which a certain amount of cultivated land, water body, and forest land is converted to built-up land, promotes soil conservation but triggers greater loss of carbon storage and flood regulation capacity. The conversion between land-use types will affect trade-offs and synergies among ecosystem services, in which carbon storage would show significant positive correlation with soil conservation through the period of 2015 to 2030, under all scenarios. Together, our results provide a quantitative scientific report that policymakers and land managers can use to identify and prioritize the best practices to sustain ecosystem services, by balancing the trade-offs among services.


2021 ◽  
Author(s):  
◽  
Nicola Scott

<p>Increasing global populations are placing increasing pressure on our natural systems, reducing their capacity to produce the ecosystem services that we rely upon for human wellbeing (World Bank, 2004).   Clarifying the implications of land-use decisions across the range of ecosystem services is fundamental to understanding the trade-offs inherent in land-use options. LUCI (the Land Utilization and Capability Indicator) is an emergent Geographic Information Systems (GIS) based framework developed to enable the mapping of several ecosystem services in a spatially explicit manner. This process enables a clearer understanding of the inter-dependencies between ecosystems and potential implications and trade-offs of management interventions across a range of services.   There is however, limited understanding of the impact, utility and credibility of such tools for land-use decision-makers, or of how they perceive the information conveyed. This Thesis considered the impact that presenting information on land-use trade-offs through LUCI had on land-owners at the farm scale.   This research supports previous findings that information alone does not drive behaviour (or decision-making) (Kollmuss, 2002, Fisk, 2011; Kennedy, 2010; Mackenzie-Mohr, 2000; Stern, 2000). Similarly, perceived credibility was not the main driver of decision-making nor is it necessarily rationally based. However without it, voluntary adoption of a new technology or tool is unlikely. Therefore, in seeking to diffuse tools, such as LUCI within a community, process design should take into account the social structures and the characteristics of targeted individuals within that community. The influence of temporal and context specific factors on decision-making provides both barriers and opportunities for technology diffusion.  The research findings propose that when integrating new tools and technologies within communities, consideration is given to using a suite of tools, mechanisms and theories in concert such as Community-Based Social Marketing (Mackenzie-Mohr, 2011) and Diffusion Theory (Rogers, 2003) to facilitate improved diffusion and uptake by communities.</p>


2020 ◽  
Vol 16 (No. 1) ◽  
pp. 39-49
Author(s):  
Sana Bouguerra ◽  
Sihem Jebari ◽  
Jamila Tarhouni

Changes in land use and land cover (LULC) are generally associated with environment pollution and the degradation of natural resources. Detecting LULC changes is essential to assess the impact on ecosystem services. The current research studies the impact of the LULC change on the soil loss and sediment export in a period of 43 years from 1972 to 2015. Landsat imageries were classified into five classes using a supervised classification method and the maximum likelihood Algorithm. Then, the sediment retention service for avoiding reservoir sedimentation was assessed using the InVEST SDR (integrated valuation of ecosystem services and trade-offs sediment delivery ratio) model. The results showed that the changes are very important in this study period (1972–2015). Forests were reduced by 18.72% and croplands were increased by approximately 54%. The InVEST SDR model simulation results reveal an increase in the sediment export and soil loss, respectively, from 1.68 to 5.57 t/ha/year and from 15.22 to 43.61 t/ha/year from the year 1972 to 2015. These results highlight the need for targeted policies on integrated land and water resource management. Then, it is important to improve the common understanding of land use and land cover dynamics to the different stakeholders. All these can help in projecting future changes in the LULC and to investigate more appropriate policy interventions for achieving better land and water management.


2020 ◽  
Vol 97 ◽  
pp. 104796 ◽  
Author(s):  
Kwadwo Kyenkyehene Kusi ◽  
Abdellatif Khattabi ◽  
Nadia Mhammdi ◽  
Said Lahssini

2019 ◽  
Vol 11 (20) ◽  
pp. 5852 ◽  
Author(s):  
Pitak Ngammuangtueng ◽  
Napat Jakrawatana ◽  
Pariyapat Nilsalab ◽  
Shabbir H. Gheewala

This research introduces an approach to analyze the nexus of water, energy and rice production system at the watershed scale. The nexus relationship equations, developed to suit the local scale facilitating analysis in the rice production sector, were integrated with a Material Flow Analysis tool to expand the visualization capability. Moreover, the nexus flow was linked with the selected resource security, eco-efficiency and economic indicators, taking into account the spatial and temporal effect of water availability. The study covers the nexus resource flows not only in the rice production sector but also all other sectors in the whole watershed to assess local resource security. The tool covers wider implications, trade-offs and synergy impacts that were not much covered in previous studies. The tool was applied to evaluate the trade-offs and synergies of the impacts from proposed scenarios of alternative agricultural practices and land-use change options. The scenarios applying land-use change, and changing non-suitable and low-suitable rice cultivation areas to sugarcane and cassava, can reduce water use significantly resulting in reducing the nexus energy while the impact on economics, food security and direct energy use is small.


Sign in / Sign up

Export Citation Format

Share Document