The Homestead kimberlite, central Montana, USA: mineralogy, xenocrysts, and upper-mantle xenoliths☆

Lithos ◽  
2004 ◽  
Vol 77 (1-4) ◽  
pp. 473-491 ◽  
Author(s):  
B. Carter Hearn Jr.
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Costanza Bonadiman ◽  
Valentina Brombin ◽  
Giovanni B. Andreozzi ◽  
Piera Benna ◽  
Massimo Coltorti ◽  
...  

AbstractThe occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P–T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3–3.0 GPa/540–1500 K, yields a negative Clapeyron slope of -0.003 GPa K–1 (on average). The intersection of the P–T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = –1.97 ± 0.35; –1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.


1997 ◽  
Vol 60 (3-4) ◽  
pp. 145-164 ◽  
Author(s):  
M. E. Varela ◽  
E. A. Bjerg ◽  
R. Clocchiatti ◽  
C. H. Labudia ◽  
G. Kurat

1987 ◽  
Vol 24 (8) ◽  
pp. 1679-1687 ◽  
Author(s):  
Dante Canil ◽  
Mark Brearley ◽  
Christopher M. Scarfe

One hundred mantle xenoliths were collected from a hawaiite flow of Miocene–Pliocene age near Rayfield River, south-central British Columbia. The massive host hawaiite contains subrounded xenoliths that range in size from 1 to 10 cm and show protogranular textures. Both Cr-diopside-bearing and Al-augite-bearing xenoliths are represented. The Cr-diopside-bearing xenolith suite consists of spinel lherzolite (64%), dunite (12%), websterite (12%), harzburgite (9%), and olivine websterite (3%). Banding and veining on a centimetre scale are present in four xenoliths. Partial melting at the grain boundaries of clinopyroxene is common and may be due to natural partial melting in the upper mantle, heating by the host magma during transport, or decompression during ascent.Microprobe analyses of the constituent minerals show that most of the xenoliths are well equilibrated. Olivine is Fo89 to Fo92, orthopyroxene is En90, and Cr diopside is Wo47En48Fs5. More Fe-rich pyroxene compositions are present in some of the websterite xenoliths. The Mg/(Mg + Fe2+) and Cr/(Cr + Al + Fe3+) ratios in spinel are uniform in individual xenoliths, but they vary from xenolith to xenolith. Equilibration temperatures for the xenoliths are 860–980 °C using the Wells geothermometer. The depth of equilibration estimated for the xenoliths using geophysical and phase equilibrium constraints is 30–40 km.


2021 ◽  
pp. M56-2019-44
Author(s):  
Philip T. Leat ◽  
Aidan J. Ross ◽  
Sally A. Gibson

AbstractAbundant mantle-derived ultramafic xenoliths occur in Cenozoic (7.7-1.5 Ma) mafic alkaline volcanic rocks along the former active margin of West Antarctica, that extends from the northern Antarctic Peninsula to Jones Mountains. The xenoliths are restricted to post-subduction volcanic rocks that were emplaced in fore-arc or back-arc positions relative to the Mesozoic-Cenozoic Antarctic Peninsula volcanic arc. The xenoliths are spinel-bearing, include harzburgites, lherzolites, wehrlites and pyroxenites, and provide the only direct evidence of the composition of the lithospheric mantle underlying most of the margin. The harzburgites may be residues of melt extraction from the upper mantle (in a mid-ocean ridge type setting), that accreted to form oceanic lithosphere, which was then subsequently tectonically emplaced along the active Gondwana margin. An exposed highly-depleted dunite-serpentinite upper mantle complex on Gibbs Island, South Shetland Islands, supports this interpretation. In contrast, pyroxenites, wehrlites and lherzolites reflect percolation of mafic alkaline melts through the lithospheric mantle. Volatile and incompatible trace element compositions imply that these interacting melts were related to the post-subduction magmatism which hosts the xenoliths. The scattered distribution of such magmatism and the history of accretion suggest that the dominant composition of sub-Antarctic Peninsula lithospheric mantle is likely to be harzburgitic.


Sign in / Sign up

Export Citation Format

Share Document