In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage

2018 ◽  
Vol 170 ◽  
pp. 10-12 ◽  
Author(s):  
Alexander Bürkle
Redox Biology ◽  
2017 ◽  
Vol 12 ◽  
pp. 690-698 ◽  
Author(s):  
Cristina Mas-Bargues ◽  
José Viña-Almunia ◽  
Marta Inglés ◽  
Jorge Sanz-Ros ◽  
Juan Gambini ◽  
...  

2008 ◽  
Vol 181 (7) ◽  
pp. 1055-1063 ◽  
Author(s):  
Rajini Mudhasani ◽  
Zhiqing Zhu ◽  
Gyorgy Hutvagner ◽  
Christine M. Eischen ◽  
Stephen Lyle ◽  
...  

Dicer, an enzyme involved in microRNA (miRNA) maturation, is required for proper cell differentiation and embryogenesis in mammals. Recent evidence indicates that Dicer and miRNA may also regulate tumorigenesis. To better characterize the role of miRNA in primary cell growth, we generated Dicer-conditional mice. Ablation of Dicer and loss of mature miRNAs in embryonic fibroblasts up-regulated p19Arf and p53 levels, inhibited cell proliferation, and induced a premature senescence phenotype that was also observed in vivo after Dicer ablation in the developing limb and in adult skin. Furthermore, deletion of the Ink4a/Arf or p53 locus could rescue fibroblasts from premature senescence induced by Dicer ablation. Although levels of Ras and Myc oncoproteins appeared unaltered, loss of Dicer resulted in increased DNA damage and p53 activity in these cells. These results reveal that loss of miRNA biogenesis activates a DNA damage checkpoint, up-regulates p19Arf-p53 signaling, and induces senescence in primary cells.


2021 ◽  
Vol 245 ◽  
pp. 03051
Author(s):  
Hanyi Jia

A mitotic cell that rests in permanent cell cycle arrest without the ability to divide is considered as a senescent cell. Cellular senescence is essential to limit the function of cells with heavy DNA damages. The lack of senescence is in favour of tumorigenesis, whereas the accumulation of senescent cells in tissues is likely to induce ageing and age-related pathologies on the organismal level. Understanding of cellular senescence is thus critical to both cancer and ageing studies. Senescence, essentially permanent cell cycle arrest, is one of the results of DNA damage response, such as the ataxia telangiectasia mutated and the ataxia telangiectasia and Rad3-related signaling pathways. In other cases, mild DNA damages can usually be repaired after DNA damage response, while the cells with heavy damages on DNA end in apoptosis. The damage to the special structure of telomere, however, prone to result in permanent cell cycle arrest after activation of DNA damage response. In fact, a few previous pieces of research on ageing have largely focused on telomere and considered it a primary contributor to different types of senescence. For instance, its reduction in length after each replication turns on a timer for replicative senescence, and its tandem repeats specific to binding proteins makes it susceptible to DNA damage from oxidative stress, and thus stress-induced premature senescence. In most of the senescent cells, the accumulation of biomarkers is found around the telomere which has either its tail structure disassembled or damage foci exposed on the tandem repeats. In this review, among several types of senescence, I will investigate two of the most common and widely discussed types in eukaryotic cells -replicative senescence and stress-induced premature senescence - in terms of their mechanism, relationship with telomere, and implication to organismal ageing.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 578 ◽  
Author(s):  
Ulrike Zentgraf ◽  
Jasmin Doll

Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.


10.2741/2673 ◽  
2008 ◽  
Vol 13 (13) ◽  
pp. 236 ◽  
Author(s):  
Mutsuko Ouchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document