Seasonal variability of dissolved inorganic carbon and surface water pCO2 in the Scotian Shelf region of the Northwestern Atlantic

2011 ◽  
Vol 124 (1-4) ◽  
pp. 23-37 ◽  
Author(s):  
E.H. Shadwick ◽  
H. Thomas ◽  
K. Azetsu-Scott ◽  
B.J.W. Greenan ◽  
E. Head ◽  
...  
2007 ◽  
Vol 4 (4) ◽  
pp. 2929-2958 ◽  
Author(s):  
I. Skjelvan ◽  
E. Falck ◽  
F. Rey ◽  
S. B. Kringstad

Abstract. Dissolved inorganic carbon (CT) has been collected at Ocean Weather Station M (OWSM) in the Norwegian Sea since 2001. Seasonal variations in CT are confined to the upper 50 m, where the biology is active, and below this layer no clear seasonal signal is seen. From winter to summer the surface CT concentration typical drops from 2140 to about 2040 μmol kg−1, while a deep water CT concentration of about 2163 μmol kg−1 is measured throughout the year. Observations show an annual increase in salinity normalized carbon concentration (nCT) of 1.3±0.7 μmol kg−1 in the surface layer, which is equivalent to a pCO2 increase of 2.6±1.2 μatm yr−1, i.e. larger than the atmospheric increase in this area. Observations also show an annual increase in the deep water nCT of 0.57± 0.24 μmol kg−1, of which about a tenth is due to inflow of old Arctic water with larger amounts of remineralised matter. The remaining part has an anthropogenic origin and sources for this might be Greenland Sea surface water, Iceland Sea surface water, and/or recirculated Atlantic Water. By using an extended multi linear regression method (eMLR) it is verified that anthropogenic carbon has entered the whole water column at OWSM.


Radiocarbon ◽  
1996 ◽  
Vol 38 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Makio C. Honda

In order to verify sediment trap samples as indicators of upper ocean 14C concentrations, particulate inorganic radiocarbon (PICΔ14C) collected by time-series sediment traps in the Sea of Okhotsk and the Bering Sea was measured by accelerator mass spectrometry (AMS). All of the PICΔ14C measurements were < 0‰, in contrast to GEOSECS 14C data in the upper ocean from the northwestern North Pacific. This difference is attributed to the upwelling of deepwater that contains low Δ14C of dissolved inorganic carbon (DICΔ14C) and to the decrease over time of surface DICΔ14C owing to the decrease of atmospheric Δ14C values. In addition, PICΔ14C values showed significant seasonal variability: PICΔ14C collected in the fall was the greatest (-22‰ on average), whereas PICΔ14C collected in winter showed an average minimum of −48‰. It is likely that this difference was caused by changes in mixed layer thickness. Although some uncertainties remain, further study on PICΔ14C will enable us to estimate seasonal variability in DICΔ14C and air-sea CO2 exchange rate.


2008 ◽  
Vol 5 (2) ◽  
pp. 549-560 ◽  
Author(s):  
I. Skjelvan ◽  
E. Falck ◽  
F. Rey ◽  
S. B. Kringstad

Abstract. Dissolved inorganic carbon (CT) has been collected at Ocean Weather Station M (OWSM) in the Norwegian Sea since 2001. Seasonal variations in (CT) are confined to the upper 50 m, where the biology is active, and below this layer no clear seasonal signal is seen. From winter to summer the surface (CT) concentration typical drop from 2140 to about 2040 μmol kg−1, while a deep water (CT) concentration of about 2163 μmol kg−1 is measured throughout the year. Observations show an annual increase in salinity normalized carbon concentration (nCT) of 1.3±0.7 μmol kg−1 yr−1 in the surface layer, which is equivalent to a pCO2 increase of 2.6±1.2 μatm yr−1, i.e. larger than the atmospheric increase in this area (2.1±0.2 μatm yr-1). Observations also show an annual increase in the deep water nCT of 0.57±0.24 μmol kg−1 yr−1, of which about 15% is due to inflow of old Arctic water with larger amounts of remineralised matter. The remaining part has an anthropogenic origin and sources for this might be Greenland Sea surface water, Iceland Sea surface water, and/or recirculated Atlantic Water. By using an extended multi linear regression method (eMLR) it is verified that anthropogenic carbon has entered the whole water column at OWSM.


2011 ◽  
Vol 8 (6) ◽  
pp. 12013-12050 ◽  
Author(s):  
E. H. Shadwick ◽  
H. Thomas ◽  
A. E. F. Prowe ◽  
E. Horne

Abstract. Relative to their surface areas, coastal oceans and continental shelves host a disproportionately large fraction of ocean productivity. The Scotian Shelf is a biologically productive coastal region of the Northwestern Atlantic Ocean. This subpolar region is influenced by the outflow of the St. Lawrence Estuary system and acts as an annual source for atmospheric CO2. As part of the Atlantic Zone Monitoring Program, dissolved inorganic carbon (DIC), total alkalinity, and surface CO2 partial pressure measurements were made throughout the Scotian Shelf in 2007. A shelf-wide assessment of the spatio-temporal variability of the inorganic carbon system was made relying on observations in April and September. Between these periods, biological production results in a significant drawdown of inorganic nutrients and DIC in the surface mixed-layer, while hydrographic controls also influence seasonal changes in DIC. Net community production (NCP) over the spring and summer seasons was estimated on the basis of inorganic carbon data. We find significant spatial variability in NCP with the largest values in the Southwestern Browns Bank region and a general trend of increasing NCP with distance offshore. A bulk seasonal carbon budget suggests that along-shore and cross-shelf transport may result in the export of subsurface DIC from this region.


Ocean Science ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 319-333 ◽  
Author(s):  
Tim Stöven ◽  
Toste Tanhua ◽  
Mario Hoppema ◽  
Wilken-Jon von Appen

Abstract. The storage of anthropogenic carbon in the ocean's interior is an important process which modulates the increasing carbon dioxide concentrations in the atmosphere. The polar regions are expected to be net sinks for anthropogenic carbon. Transport estimates of dissolved inorganic carbon and the anthropogenic offset can thus provide information about the magnitude of the corresponding storage processes. Here we present a transient tracer, dissolved inorganic carbon (DIC) and total alkalinity (TA) data set along 78°50′ N sampled in the Fram Strait in 2012. A theory on tracer relationships is introduced, which allows for an application of the inverse-Gaussian–transit-time distribution (IG-TTD) at high latitudes and the estimation of anthropogenic carbon concentrations. Mean current velocity measurements along the same section from 2002–2010 were used to estimate the net flux of DIC and anthropogenic carbon by the boundary currents above 840 m through the Fram Strait. The new theory explains the differences between the theoretical (IG-TTD-based) tracer age relationship and the specific tracer age relationship of the field data, by saturation effects during water mass formation and/or the deliberate release experiment of SF6 in the Greenland Sea in 1996, rather than by different mixing or ventilation processes. Based on this assumption, a maximum SF6 excess of 0.5–0.8 fmol kg−1 was determined in the Fram Strait at intermediate depths (500–1600 m). The anthropogenic carbon concentrations are 50–55 µmol kg−1 in the Atlantic Water/Recirculating Atlantic Water, 40–45 µmol kg−1 in the Polar Surface Water/warm Polar Surface Water and between 10 and 35 µmol kg−1 in the deeper water layers, with lowest concentrations in the bottom layer. The net fluxes through the Fram Strait indicate a net outflow of  ∼  0.4 DIC and  ∼  0.01 PgC yr−1 anthropogenic carbon from the Arctic Ocean into the North Atlantic, albeit with high uncertainties.


2021 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel ◽  
Dariia Atamanchuk ◽  
Douglas Wallace ◽  
Helmuth Thomas

Abstract. Continental shelves are thought to be affected disproportionately by climate change and are a large contributor to global air-sea carbon dioxide (CO2) fluxes. It is often reported that low-latitude shelves tend to act as net sources of CO2 whereas mid- and high-latitude shelves act as net sinks. Here, we combine a high-resolution regional model with surface water time-series and repeat transect observations from the Scotian Shelf, a mid-latitude region in the northwest North Atlantic, to determine what processes are driving the temporal and spatial variability of partial pressure of CO2 (pCO2). In contrast to the global trend, the Scotian Shelf acts as a net source. Surface pCO2 undergoes a strong seasonal cycle associated with both a strong biological drawdown of Dissolved Inorganic Carbon (DIC) in spring, and pronounced effects of temperature, which ranges from 0 °C in the winter to near 20 °C in the summer. Throughout the summer, events with low surface-water pCO2 occur nearshore associated with coastal upwelling. This effect of upwelling on pCO2 is also in contrast to the general assumption that upwelling increases surface pCO2 by delivering DIC-enriched water to the surface. Aside from these localized events, pCO2 is relatively uniform across the shelf. Our model agrees with regional observations, reproduces seasonal patterns of pCO2, and simulates annual outgassing of CO2 from the ocean of +1.9 ± 0.2 mol C m−2 yr−1 for the Scotian Shelf, net neutral CO2 flux of −0.09 ± 0.16 mol C m−2 yr−1 for the Gulf of Maine and uptake by the ocean of −0.88 ± 0.4 mol C m−2 yr−1 for the Grand Banks.


2021 ◽  
Vol 18 (23) ◽  
pp. 6271-6286
Author(s):  
Krysten Rutherford ◽  
Katja Fennel ◽  
Dariia Atamanchuk ◽  
Douglas Wallace ◽  
Helmuth Thomas

Abstract. Continental shelves are thought to be affected disproportionately by climate change and are a large contributor to global air–sea carbon dioxide (CO2) fluxes. It is often reported that low-latitude shelves tend to act as net sources of CO2, whereas mid- and high-latitude shelves act as net sinks. Here, we combine a high-resolution regional model with surface water time series and repeat transect observations from the Scotian Shelf, a mid-latitude region in the northwest North Atlantic, to determine what processes are driving the temporal and spatial variability of partial pressure of CO2 (pCO2) on a seasonal scale. In contrast to the global trend, the Scotian Shelf acts as a net source. Surface pCO2 undergoes a strong seasonal cycle with an amplitude of ∼ 200–250 µatm. These changes are associated with both a strong biological drawdown of dissolved inorganic carbon (DIC) in spring (corresponding to a decrease in pCO2 of 100–200 µatm) and pronounced effects of temperature, which ranges from 0 ∘C in the winter to near 20 ∘C in the summer, resulting in an increase in pCO2 of ∼ 200–250 µatm. Throughout the summer, events with low surface water pCO2 occur associated with coastal upwelling. This effect of upwelling on pCO2 is also in contrast to the general assumption that upwelling increases surface pCO2 by delivering DIC-enriched water to the surface. Aside from these localized events, pCO2 is relatively uniform across the shelf. Our model agrees with regional observations, reproduces seasonal patterns of pCO2, and simulates annual outgassing of CO2 from the ocean of +1.7±0.2 mol C m−2 yr−1 for the Scotian Shelf, net uptake of CO2 by the ocean of -0.5±0.2 mol C m−2 yr−1 for the Gulf of Maine, and uptake by the ocean of -1.3±0.3 mol C m−2 yr−1 for the Grand Banks.


2020 ◽  
Vol 162 (2) ◽  
pp. 877-902
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Tomohiko Tsunoda ◽  
Xinyu Guo

Abstract Here, we investigate the seasonal variability in the dissolved inorganic carbon (DIC) cycle in the Northwest Pacific using a high-resolution biogeochemical and carbon model coupled with an operational ocean model. Results show that the contribution to DIC from air–sea CO2 exchange is generally offset by vertical mixing at the surface at all latitudes, with some seasonal variation. Biological processes in subarctic regions are evident at the surface, whereas in the subtropical region these processes take place within the euphotic layer and then DIC consumption deepens southward with latitude. Such latitudinal differences in biological processes lead to marked horizontal and vertical contrasts in the distribution of DIC, with modulation by horizontal and vertical advection–diffusion processes.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 397-407 ◽  
Author(s):  
Ellen R M Druffel ◽  
Susumu Honjo ◽  
Sheila Griffin ◽  
C S Wong

Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station “P” in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIG) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ14C variation of 14‰. Results show that the Δ14C of calcium carbonate scdimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ14C values (by 25–70‰) than that in surface water DIC. Also, the δ13C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed.


Sign in / Sign up

Export Citation Format

Share Document