Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: Role of acidification, nutrients and solar UVR

2015 ◽  
Vol 177 ◽  
pp. 411-420 ◽  
Author(s):  
Virginia E. Villafañe ◽  
Macarena S. Valiñas ◽  
Marco J. Cabrerizo ◽  
E. Walter Helbling
2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.


2017 ◽  
Vol 23 ◽  
pp. 70-80 ◽  
Author(s):  
Mary A Jamieson ◽  
Laura A Burkle ◽  
Jessamyn S Manson ◽  
Justin B Runyon ◽  
Amy M Trowbridge ◽  
...  

2018 ◽  
Vol 5 ◽  
Author(s):  
Peter J. Edmunds ◽  
Shelby E. McIlroy ◽  
Mehdi Adjeroud ◽  
Put Ang ◽  
Jessica L. Bergman ◽  
...  

2018 ◽  
Vol 285 (1879) ◽  
pp. 20180285 ◽  
Author(s):  
J. Côte ◽  
A. Boniface ◽  
S. Blanchet ◽  
A. P. Hendry ◽  
J. Gasparini ◽  
...  

The role of parasites in shaping melanin-based colour polymorphism, and the consequences of colour polymorphism for disease resistance, remain debated. Here we review recent evidence of the links between melanin-based coloration and the behavioural and immunological defences of vertebrates against their parasites. First we propose that (1) differences between colour morphs can result in variable exposure to parasites, either directly (certain colours might be more or less attractive to parasites) or indirectly (variations in behaviour and encounter probability). Once infected, we propose that (2) immune variation between differently coloured individuals might result in different abilities to cope with parasite infection. We then discuss (3) how these different abilities could translate into variable sexual and natural selection in environments varying in parasite pressure. Finally, we address (4) the potential role of parasites in the maintenance of melanin-based colour polymorphism, especially in the context of global change and multiple stressors in human-altered environments. Because global change will probably affect both coloration and the spread of parasitic diseases in the decades to come, future studies should take into account melanin-based coloration to better predict the evolutionary responses of animals to changing disease risk in human-altered environments.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 609 ◽  
Author(s):  
Ester González de Andrés

Forest ecosystems are undergoing unprecedented changes in environmental conditions due to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and the subsequent climate change are affecting forest functions at different scales, from physiology and growth of individual trees to cycling of nutrients. This review summarizes the present knowledge regarding the impact of global change on forest functioning not only with respect to climate change, which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions among them. The carbon dioxide (CO2) fertilization effect on tree growth is expected to be constrained by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing water deficit, which interact in a complex way. At the community level, responses to global change are modified by species interactions that may lead to competition for resources and/or relaxation due to facilitation and resource partitioning processes. Thus, some species mixtures can be more resistant to drought than their respective pure forests, albeit it depends on environmental conditions and species’ functional traits. Climate change and nitrogen deposition have additional impacts on litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees’ adaptability to stress or decomposition rates. As stoichiometry of different ecosystem components are also influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment of traditional forest management is needed in order to cope with global change. Proposed silvicultural systems emphasize the key role of diversity to assure multiple ecosystem services, and special attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying mechanisms governing the relationships between diversity and different ecosystems functions, such as productivity and stability, is provided.


Sign in / Sign up

Export Citation Format

Share Document