Mollusk death assemblages in 210Pb-dated marine sediment cores reveal recent biotic changes in the Gulf of Guanahacabibes, NW Cuba

2021 ◽  
Vol 171 ◽  
pp. 105477
Author(s):  
Maickel Armenteros ◽  
Misael Díaz-Asencio ◽  
Rosely Peraza-Escarrá ◽  
Raúl Fernández-Garcés ◽  
Adrián Martínez-Suárez ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mizuki Ogata ◽  
Reiji Masuda ◽  
Hiroya Harino ◽  
Masayuki K. Sakata ◽  
Makoto Hatakeyama ◽  
...  

AbstractEnvironmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


2012 ◽  
Vol 29 (2) ◽  
pp. 109-114 ◽  
Author(s):  
J. Feige ◽  
A. Wallner ◽  
S. R. Winkler ◽  
S. Merchel ◽  
L. K. Fifield ◽  
...  

AbstractAn enhanced concentration of 60Fe was found in a deep ocean crust in 2004 in a layer corresponding to an age of ∼2 Myr. The confirmation of this signal in terrestrial archives as supernova-induced and the detection of other supernova-produced radionuclides is of great interest. We have identified two suitable marine sediment cores from the South Australian Basin and estimated the intensity of a possible signal of the supernova-produced radionuclides 26Al, 53Mn, 60Fe, and the pure r-process element 244Pu in these cores. The finding of these radionuclides in a sediment core might allow us to improve the time resolution of the signal and thus to link the signal to a supernova event in the solar vicinity ∼2 Myr ago. Furthermore, it gives us an insight into nucleosynthesis scenarios in massive stars, condensation into dust grains and transport mechanisms from the supernova shell into the solar system.


2017 ◽  
Vol 8 ◽  
Author(s):  
Taha Soliman ◽  
James D. Reimer ◽  
Sung-Yin Yang ◽  
Alejandro Villar-Briones ◽  
Michael C. Roy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document