Estimating planktonic diversity through spatial dominance patterns in a model ocean

2016 ◽  
Vol 29 ◽  
pp. 9-17 ◽  
Author(s):  
Alice Soccodato ◽  
Francesco d'Ovidio ◽  
Marina Lévy ◽  
Oliver Jahn ◽  
Michael J. Follows ◽  
...  
Keyword(s):  
2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


2020 ◽  
Vol 117 (9) ◽  
pp. 4842-4849
Author(s):  
Jonathan Maitland Lauderdale ◽  
Rogier Braakman ◽  
Gaël Forget ◽  
Stephanie Dutkiewicz ◽  
Michael J. Follows

Iron is the limiting factor for biological production over a large fraction of the surface ocean because free iron is rapidly scavenged or precipitated under aerobic conditions. Standing stocks of dissolved iron are maintained by association with organic molecules (ligands) produced by biological processes. We hypothesize a positive feedback between iron cycling, microbial activity, and ligand abundance: External iron input fuels microbial production, creating organic ligands that support more iron in seawater, leading to further macronutrient consumption until other microbial requirements such as macronutrients or light become limiting, and additional iron no longer increases productivity. This feedback emerges in numerical simulations of the coupled marine cycles of macronutrients and iron that resolve the dynamic microbial production and loss of iron-chelating ligands. The model solutions resemble modern nutrient distributions only over a finite range of prescribed ligand source/sink ratios where the model ocean is driven to global-scale colimitation by micronutrients and macronutrients and global production is maximized. We hypothesize that a global-scale selection for microbial ligand cycling may have occurred to maintain “just enough” iron in the ocean.


1989 ◽  
Vol 53 (3-4) ◽  
pp. 328-336 ◽  
Author(s):  
D.E. Winch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document