Impact on oceanic dynamics from assimilation of satellite surface height anomaly data into the Hybrid Coordinate Ocean Model Ocean Model (HYCOM) over the Atlantic Ocean

Oceanology ◽  
2016 ◽  
Vol 56 (4) ◽  
pp. 509-514
Author(s):  
C. A. S. Tanajura ◽  
L. N. Lima ◽  
K. Belyaev
1995 ◽  
Vol 13 (9) ◽  
pp. 995-1008 ◽  
Author(s):  
J. Servain ◽  
S. Arnault

Abstract. Modelling and observational evidence indicate that interannual variabilities of dynamic height and sea surface temperature (SST) in the eastern part of the tropical Atlantic Ocean (Gulf of Guinea) are largely induced by preceding fluctuations in wind stress, mainly in the western equatorial basin. A wind-driven linear ocean model is used here to test the possibility of forecasting the abnormal dynamic heights. A control run of the model, forced by 1964–1993 wind stress monthly means, is first conducted. Yearly test runs (1964–1994) are subsequently performed from January to August by forcing the model with observed winds from January to May, and then by forcing with the May wind assumed to persist from June to August. During the last three decades the largest deviations of dynamic height simulated by the control run in the Gulf of Guinea in boreal summer would have been correctly forecast from wind data related only to conditions in May of each year. However, for weak climatic anomalies, the model may forecast overestimated values. For the most part (about 20 times during the last 30 years), the sign of the observed SST anomaly in the centre of the Gulf of Guinea during the boreal summer is identical to the sign of simulated anomalies of dynamic height deduced from both control and test runs. Along the eastern equatorial waveguide, the sea level forecasting skill slowly decreases from the first 2 weeks of June until the second 2 weeks of August, but remains high on both sides of the equator throughout boreal summer, as is expected from the adjustment in a linear ocean model. It is established that throughout the year in the Gulf of Guinea the accuracy of the 1-month forecast dynamic height anomaly provided by the simple linear method is greater than that of the 1-month forecast assuming persistence.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 195-213 ◽  
Author(s):  
D. Mignac ◽  
C. A. S. Tanajura ◽  
A. N. Santana ◽  
L. N. Lima ◽  
J. Xie

Abstract. An ocean data assimilation system to assimilate Argo temperature (T) and salinity (S) profiles into the HYbrid Coordinate Ocean Model (HYCOM) was constructed, implemented and evaluated for the first time in the Atlantic Ocean (78° S to 50° N and 98° W to 20° E). The system is based on the ensemble optimal interpolation (EnOI) algorithm proposed by Xie and Zhu (2010), especially made to deal with the hybrid nature of the HYCOM vertical coordinate system with multiple steps. The Argo T–S profiles were projected to the model vertical space to create pseudo-observed layer thicknesses (Δ pobs), which correspond to the model target densities. The first step was to assimilate Δ pobs considering the sub-state vector composed by the model layer thickness (Δ p) and the baroclinic velocity components. After that, T and S were assimilated separately. Finally, T was diagnosed below the mixed layer to preserve the density of the model isopycnal layers. Five experiments were performed from 1 January 2010 to 31 December 2012: a control run without assimilation, and four assimilation runs considering the different vertical localizations of T, S and Δ p. The assimilation experiments were able to significantly improve the thermohaline structure produced by the control run. They reduced the root mean square deviation (RMSD) of T and S calculated with respect to Argo independent data in 34 and 44%, respectively, in comparison to the control run. In some regions, such as the western North Atlantic, substantial corrections in the 20 °C isotherm depth and the upper ocean heat content towards climatological states were achieved. The runs with a vertical localization of Δ p showed positive impacts in the correction of the thermohaline structure and reduced the RMSD of T (S) from 0.993 °C (0.149 psu) to 0.905 °C (0.138 psu) for the whole domain with respect to the other assimilation runs.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoyu Yang ◽  
Haibin Ye

AbstractA coastal front was detected in the eastern Guangdong (EGD) coastal waters during a downwelling-favorable wind period by using the diffuse attenuation coefficient at 490 nm (Kd(490)). Long-term satellite data, meteorological data and hydrographic data collected from 2003 to 2017 were jointly utilized to analyze the environmental factors affecting coastal fronts. The intensities of the coastal fronts were found to be associated with the downwelling intensity. The monthly mean Kd(490) anomalies in shallow coastal waters less than 25 m deep along the EGD coast and the monthly mean Ekman pumping velocities retrieved by the ERA5 dataset were negatively correlated, with a Pearson correlation of − 0.71. The fronts started in October, became weaker and gradually disappeared after January, extending southwestward from the southeastern coast of Guangdong Province to the Wanshan Archipelago in the South China Sea (SCS). The cross-frontal differences in the mean Kd(490) values could reach 3.7 m−1. Noticeable peaks were found in the meridional distribution of the mean Kd(490) values at 22.5°N and 22.2°N and in the zonal distribution of the mean Kd(490) values at 114.7°E and 114.4°E. The peaks tended to narrow as the latitude increased. The average coastal surface currents obtained from the global Hybrid Coordinate Ocean Model (HYCOM) showed that waters with high nutrient and sediment contents in the Fujian and Zhejiang coastal areas in the southern part of the East China Sea could flow into the SCS. The directions and lengths of the fronts were found to be associated with the flow advection.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2019 ◽  
Vol 36 (8) ◽  
pp. 1547-1561
Author(s):  
Elizabeth M. Douglass ◽  
Andrea C. Mask

AbstractAs numerical modeling advances, quantitative metrics are necessary to determine whether the model output accurately represents the observed ocean. Here, a metric is developed based on whether a model places oceanic fronts in the proper location. Fronts are observed and assessed directly from along-track satellite altimetry. Numerical model output is then interpolated to the locations of the along-track data, and fronts are detected in the model output. Scores are determined from the percentage of observed fronts correctly simulated in the model and from the percentage of modeled fronts confirmed by observations. These scores depend on certain parameters such as the minimum size of a front, which will be shown to be geographically dependent. An analysis of two models, the Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean Model (NCOM), is presented as an example of how this metric might be applied and interpreted. In this example, scores are found to be relatively stable in time, but strongly dependent on the mesoscale variability in the region of interest. In all cases, the metric indicates that there are more observed fronts not found in the models than there are modeled fronts missing from observations. In addition to the score itself, the analysis demonstrates that modeled fronts have smaller amplitude and are less steep than observed fronts.


Sign in / Sign up

Export Citation Format

Share Document