scholarly journals High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene

2014 ◽  
Vol 111 ◽  
pp. 53-65 ◽  
Author(s):  
Gerald Auer ◽  
Werner E. Piller ◽  
Mathias Harzhauser
2014 ◽  
Vol 10 (2) ◽  
pp. 1223-1264 ◽  
Author(s):  
G. Auer ◽  
W. E. Piller ◽  
M. Harzhauser

Abstract. Within a 5.5 m-thick succession of Upper Burdigalian (Karpatian) sediments in the North Alpine Foreland Basin (NAFB; Austria), dated to CNP-zone NN4, a high-resolution section was logged continuously. 100 samples were taken with a resolution of ~10 mm per layer and analysed using an integrated multi-proxy approach. Earlier analyses of geochemistry and calcareous nannoplankton assemblages hint at small-scale, short-term variations in palaeoenvironmental conditions, such as water-column stratification, primary productivity, organic matter flux, bottom-water oxygenation, freshwater influx and changes in relative sea-level. The results indicate a highly dynamic shallow marine setting that was subject to high frequency environmental changes on a decadal to centennial scale. Time-series analyses on nine different proxy-datasets using REDFIT-analysis and Wavelet spectra were applied to resolve a possible cyclic nature of these variations. Analyses revealed that different proxies for precipitation, upwelling intensity, and over all productivity likely were controlled by different cyclicities. A best-fit adjustment of the likely sedimentation rates within the high-resolution section resulted in periodicities fitting well with the Lower (~65 yr) and Upper (~113 yr) Gleissberg cycle as well as the Suess/de Vries cycle (~211 yr). The section covers a timespan of ~1190 yr based on the correlation with solar cycles, which resulted in an estimated sedimentation rate of 575 mm kyr−1. For the first time, short-term climate variability on a decadal to centennial scale is resolved in Lower Miocene shallow marine laminated sediments in a land-based section. The results hint at a close relationship between climate variability and solar forcing during the Late Burdigalian. Moreover, accepting that these cyclicities are indeed of solar origin, this would indicate that precipitation was driven by the two Gleissberg cycles, while upwelling was driven by the Suess cycle. Furthermore, proxies for primary productivity were influenced by both cycles, although the Suess cycle exerts dominant control, reflecting a stronger influence of upwelling on primary productivity.


2015 ◽  
Vol 11 (2) ◽  
pp. 283-303 ◽  
Author(s):  
G. Auer ◽  
W. E. Piller ◽  
M. Harzhauser

Abstract. Within a 5.5 m thick succession of Upper Burdigalian (Karpatian) sediments in the North Alpine Foreland Basin (NAFB; Austria), dated to CNP-zone NN4, a high-resolution section was logged continuously. One hundred samples were taken with a resolution of ~10 mm (approximating ~17 years) per layer and analyzed using an integrated multi-proxy approach. Earlier analyses of geochemistry and calcareous nannoplankton assemblages hint at small-scale, short-term variations in paleoenvironmental conditions, such as water-column stratification, primary productivity, organic matter flux, bottom-water oxygenation, freshwater influx, and changes in relative sea level. The results indicate a highly dynamic shallow marine setting that was subject to high-frequency environmental changes on a decadal to centennial scale. Time-series analyses on nine different proxy data sets using REDFIT analysis and wavelet spectra were applied to resolve a possible cyclic nature of these variations. Analyses revealed that different proxies for precipitation, upwelling intensity, and overall productivity were likely controlled by different cyclicities. A best-fit adjustment of the likely sedimentation rates within the high-resolution section resulted in periodicities fitting well with the Lower (~65 years) and Upper (~113 years) Gleissberg cycle as well as the Suess/de Vries cycle (~211 years). The section covers a time span of ~1190 years based on the correlation with solar cycles, which resulted in an estimated sedimentation rate of 575 mm kyr−1. For the first time, short-term climate variability on a decadal to centennial scale is resolved in Lower Miocene shallow marine laminated sediments in a land-based section. The results hint at a close relationship between climate variability and solar forcing during the Late Burdigalian. Moreover, accepting that these cyclicities are indeed of solar origin, this would indicate that precipitation was driven by the two Gleissberg cycles, while upwelling was driven by the Suess cycle. Furthermore, proxies for primary productivity were influenced by both cycles, although the Suess cycle exerts dominant control, reflecting a stronger influence of upwelling on primary productivity.


The Holocene ◽  
2017 ◽  
Vol 27 (12) ◽  
pp. 1928-1947 ◽  
Author(s):  
Magdalena Wieckowska-Lüth ◽  
Wiebke Kirleis ◽  
Walter Doerfler

A high-resolution multi-proxy record from sediments of a small-sized lake situated in Telemark, southeastern Norway, was used to reconstruct the local landscape development of the past c. 10,500 years. Our data demonstrate that changes in vegetation composition and structure in the first two-thirds of the Holocene are principally attributable to climatic changes and high erosion rates, as deduced from geochemical and physical (loss-on-ignition) proxy analyses. The highest signals of erosional inputs to the lake (c. 8030–5760 cal. BP) can be correlated with the first part of the Holocene Thermal Maximum. Nevertheless, evidence from pollen, non-pollen palynomorphs and microscopic charcoal analyses indicates the presence of nutrient-rich and disturbed environments already during the middle Mesolithic (c. 10,050–9400 cal. BP). It also shows traces of animal husbandry (c. 5580 cal. BP) and small-scale cereal cultivation (c. 5520 cal. BP) in the early Neolithic. In subsequent periods, human impact remains at a relatively low level and does not generate significant palaeo-environmental changes. Not until the second half of the Bronze Age (c. 2840 cal. BP) is some intensification in animal husbandry recorded, whereas crop cultivation continues to play a minor role in the second millennium BP. The establishment of a full farming economy took place during the Roman Iron Age (c. 1790 cal. BP), characterised by extensive forest clearance and local fires, crop cultivation in permanent fields and the presence of open pastures. This establishment is associated with advanced soil degeneration and increased erosion rates.


Author(s):  
S. Mirzaee ◽  
M. Motagh ◽  
H. Arefi ◽  
A. Nooryazdan

Remote sensing plays a key role in monitoring and assessing environmental changes. Because of its special imaging characteristics such as high-resolution, capabilities to obtain data in all weather conditions and sensitivity to geometrical and dielectric properties of the features, Synthetic Aperture Radar (SAR) technology has become a powerful technique to detect small scale changes related to earth surface.SAR images contain the information of both phase and intensity in different modes like single, dual and full polarimetric states which are important in order to extract information about various targets. In this study we investigate phenological changes in an agricultural region using high-resolution X-band SAR data. The case study is located in Doroud region of Lorestan province, west of Iran. The purpose is to investigate the ability of copolar and interferometric coherence extracted from TanDEM-X dual polarimetry (HH/VV) in bistatic StripMap mode for tracking the phenological changes of crops during growing season. The data include 11 images acquired between 12.06.2012 and 02.11.2012 and 6 images acquired between 30.05.2013 and 04.08.2013 in the CoSSC format. Results show that copolar coherence is almost able to follow phenological changes but interferometric coherence has a near constant behaviour with fluctuations mainly related to baseline variations.


2019 ◽  
Vol 15 (S359) ◽  
pp. 312-317
Author(s):  
Francoise Combes

AbstractGas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.


2004 ◽  
Vol 22 (1) ◽  
pp. 169-182 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
L. J. Baddeley ◽  
J. A. Davies ◽  
R. S. Dhillon ◽  
...  

Abstract. The EISCAT high power heating facility at Tromsø, northern Norway, has been utilised to generate artificial radar backscatter in the fields of view of the CUTLASS HF radars. It has been demonstrated that this technique offers a means of making very accurate and high resolution observations of naturally occurring ULF waves. During such experiments, the usually narrow radar spectral widths associated with artificial irregularities increase at times when small scale-sized (high m-number) ULF waves are observed. Possible mechanisms by which these particle-driven high-m waves may modify the observed spectral widths have been investigated. The results are found to be consistent with Pc1 (ion-cyclotron) wave activity, causing aliasing of the radar spectra, in agreement with previous modelling work. The observations also support recent suggestions that Pc1 waves may be modulated by the action of longer period ULF standing waves, which are simultaneously detected on the magnetospheric field lines. Drifting ring current protons with energies of ∼ 10keV are indicated as a common plasma source population for both wave types. Key words. Magnetospheric physics (MHD waves and instabilities) – Space plasma physics (wave-particle interactions) – Ionosphere (active experiments)


Solar Physics ◽  
1996 ◽  
Vol 164 (1-2) ◽  
pp. 303-310 ◽  
Author(s):  
F. Kneer ◽  
F. Stolpe

2011 ◽  
Vol 4 (1) ◽  
pp. 67-88 ◽  
Author(s):  
G. J. Marseille ◽  
K. Houchi ◽  
J. de Kloe ◽  
A. Stoffelen

Abstract. The definition of an atmospheric database is an important component of simulation studies in preparation of future earth observing remote sensing satellites. The Aeolus mission, formerly denoted Atmospheric Dynamics Mission (ADM) or ADM-Aeolus, is scheduled for launch end of 2013 and aims at measuring profiles of single horizontal line-of-sight (HLOS) wind components from the surface up to about 32 km with a global coverage. The vertical profile resolution is limited but may be changed during in-orbit operation. This provides the opportunity of a targeted sampling strategy, e.g., as a function of geographic region. Optimization of the vertical (and horizontal) sampling strategy requires a characterization of the atmosphere optical and dynamical properties, more in particular the distribution of atmospheric particles and their correlation with the atmospheric dynamics. The Aeolus atmospheric database combines meteorological data from the ECMWF model with atmosphere optical properties data from CALIPSO. An inverse algorithm to retrieve high-resolution particle backscatter from the CALIPSO level-1 attenuated backscatter product is presented. Global weather models tend to underestimate atmospheric wind variability. A procedure is described to ensure compatibility of the characteristics of the database winds with those from high-resolution radiosondes. The result is a high-resolution database of zonal, meridional and vertical wind, temperature, specific humidity and particle and molecular backscatter and extinction at 355 nm laser wavelength. This allows the simulation of small-scale atmospheric processes within the Aeolus observation sampling volume and their impact on the quality of the retrieved HLOS wind profiles. The database extends over four months covering all seasons. This allows a statistical evaluation of the mission components under investigation. The database is currently used for the development of the Aeolus wind processing, the definition of wind calibration strategies and the optimization of the Aeolus sampling strategy.


Sign in / Sign up

Export Citation Format

Share Document