The role of Late Cretaceous wrench tectonics in hydrocarbon endowment in El-Gindi Basin, northern Western Desert, Egypt

2020 ◽  
Vol 112 ◽  
pp. 104093 ◽  
Author(s):  
M. Naguib El Ghamry ◽  
Maher El Amawy ◽  
Wael Hagag
Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 310 ◽  
Author(s):  
Dimitrios Rallakis ◽  
Raymond Michels ◽  
Marc Brouand ◽  
Olivier Parize ◽  
Michel Cathelineau

The Zoovch Ovoo uranium deposit is located in East Gobi Basin in Mongolia. It is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, in the lower part of the post-rift infilling of the Mesozoic East Gobi Basin. The Sainshand Formation corresponds to poorly consolidated medium-grained sandy intervals and clay layers deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60- to 80-m-thick siliciclastic reservoir inside aquifer driven systems, assimilated to roll-fronts. As assessed by vitrinite reflectance (%Rr < 0.4) and molecular geochemistry, the formation has never experienced significant thermal maturation. Detrital organic matter (type III and IV kerogens) is abundant in the Zoovch Ovoo depocenter. In this framework, uranium occurs as: (i) U-rich macerals without any distinguishable U-phase under SEM observation, containing up to 40 wt % U; (ii) U expressed as UO2 at the rims of large (several millimeters) macerals and (iii) U oxides partially to entirely replacing macerals, while preserving the inherited plant texture. Thus, uranium is accumulated gradually in the macerals through an organic carbon–uranium epigenization process, in respect to the maceral’s chemistry and permeability. Most macerals are rich in S and, to a lesser extent, in Fe. Frequently, Fe and S contents do not fit the stoichiometry of pyrite, although pyrite also occurs as small inclusions within the macerals. The organic matter appears thus as a major redox trap for uranium in this kind of geological setting.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.


2020 ◽  
Vol 13 (17) ◽  
Author(s):  
Mohamed I. A. Ibrahim ◽  
Sameh S. Tahoun ◽  
Mohamed K. Zobaa ◽  
Francisca E. Oboh-Ikuenobe ◽  
Suzan E. Kholeif

2020 ◽  
Vol 23 (01) ◽  
pp. 345-356
Author(s):  
Ahmed H. Awaad ◽  
Ahmed M. El-Maraghi ◽  
Ashraf Abdel Gawad ◽  
Ahmed H. El-Banbi

2003 ◽  
Vol 174 (3) ◽  
pp. 197-209 ◽  
Author(s):  
Marcel Lemoine

Abstract The Alpine and Corsican Schistes lustrés (SL) are nearly azoic Jurassic-Cretaceous metasediments often associated with ophiolites. They are derived from both the vanished Valais (N-Penninic) and Piemont-Ligurian (S-Penninic) oceans and from their continental margins. Their age is generally poorly known. Because of fossils discovered by Alb. Heim and by S. Franchi at the beginning of the 20th century, they were believed for a long time to be mostly Liassic in age. We know now that the major part of the SL is Cretaceous. Deep-sea sediments, and particularly the SL, are made up of a hemipelagic-pelagic background (HPB) associated with detrital components of local or distant origin. The nature of the HPB, mostly conditioned by Tethyan and worldwide events, is of great help as an at least rough stratigraphic marker ; in contrast, detrital material is not a reliable marker because it may occur at different times in different places. The HPB exhibits several successive, 10 to 40 m.y. long episodes which are either predominantly argillaceous (A) or calcareous (C). During the deposition of the Juras-sic-Cretaceous SL, seven episodes can be distinguished : C1, calcareous Liassic ; A1, marly Upper Liassic ; C2, calcareous latest Liassic and early Dogger ; A2, shaly or radiolaritic late Dogger-early Malm ; C3, calcareous late Malm ; A3 shaly or marly early Cretaceous ; C4 calcareous late Cretaceous. They can be recognized, each one by its prevailing lithology, and all together by their succession in order from C1 to C4. Nearly all of these subdivisions are here and there dated by rare fossils, which allow for a rough dating of the numerous azoic SL series. As they exhibit very different lithologies, from pelagic calcareous oozes to Black Shales and various kinds of flysch and other mass flow deposits, the SL cannot be considered as a specific, well-defined facies : they are not characteristic for a particular stage of the geodynamic evolution of the Alps. Finally, a possible influence of worldwide events is suggested. First, the role of the depth of the CCD, governed by early late Jurassic and early late Cretaceous biotic recoveries. Secondly, the correlation with first order eustatic events : transgressions on platforms seem to be roughly coeval with A episodes in the deep sea, regressions with C episodes.


2013 ◽  
Vol 184 (1-2) ◽  
pp. 21-34 ◽  
Author(s):  
Jean-Marc Lardeaux ◽  
Philippe Münch ◽  
Michel Corsini ◽  
Jean-Jacques Cornée ◽  
Chrystèle Verati ◽  
...  

Abstract In this paper we present and discuss new investigations performed on both the magmatic basement and the sedimentary formations of La Désirade. We report structural and sedimentary evidences for several episodes of deformation and displacement occurring prior to the present day tectonics. The main faults, respectively N130 ± 10°, N040 ± 10° and N090 ± 10°, previously considered as marker of the current tectonic regime corresponds to reactivated tectonic structures developed first during late Cretaceous compression and second during Pliocene to early Pleistocene extension. We demonstrate also the importance of late Pliocene-early Pleistocene and middle-late Pleistocene vertical movements in this part of the Lesser Antilles fore-arc as well as the role of compressive tectonics in the over thickened character of the arc basement in the Guadeloupe archipelago.


2006 ◽  
Vol 41 (10) ◽  
pp. 1625-1631 ◽  
Author(s):  
David T. King ◽  
Jens Ormö ◽  
Lucille W. Petruny ◽  
Thornton L. Neathery

Sign in / Sign up

Export Citation Format

Share Document