scholarly journals Data challenges and opportunities for environmental management of North Sea oil and gas decommissioning in an era of blue growth

Marine Policy ◽  
2018 ◽  
Vol 97 ◽  
pp. 130-138 ◽  
Author(s):  
Fiona Murray ◽  
Katherine Needham ◽  
Kate Gormley ◽  
Sally Rouse ◽  
Joop W.P. Coolen ◽  
...  
2021 ◽  
Vol 46 (2) ◽  
pp. 157-175
Author(s):  
Yan Wang ◽  
Erik Lindblom ◽  
Yanjing Zhu ◽  
Ruth E. Mathews ◽  
Mikael Malmaeus ◽  
...  

Author(s):  
T Sheydai ◽  
O Nykyforuk ◽  
U Berezhnytska ◽  
I Melnychuk ◽  
I Mandryk

2021 ◽  
Vol 3 (3) ◽  
pp. 60-67
Author(s):  
Irina Yurievna Eremina ◽  
Pavel Alexandrovich Kolpakov ◽  
Alexandra Dmitrievna Ileritskaya

2021 ◽  
Author(s):  
Andrés Martínez

<p><strong>A METHODOLOGY FOR OPTIMIZING MODELING CONFIGURATION IN THE NUMERICAL MODELING OF OIL CONCENTRATIONS IN UNDERWATER BLOWOUTS: A NORTH SEA CASE STUDY</strong></p><p>Andrés Martínez<sup>a,*</sup>, Ana J. Abascal<sup>a</sup>, Andrés García<sup>a</sup>, Beatriz Pérez-Díaz<sup>a</sup>, Germán Aragón<sup>a</sup>, Raúl Medina<sup>a</sup></p><p><sup>a</sup>IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Avda. Isabel Torres, 15, 39011 Santander, Spain</p><p><sup>* </sup>Corresponding author: [email protected]</p><p>Underwater oil and gas blowouts are not easy to repair. It may take months before the well is finally capped, releasing large amounts of oil into the marine environment. In addition, persistent oils (crude oil, fuel oil, etc.) break up and dissipate slowly, so they often reach the shore before the cleanup is completed, affecting vasts extension of seas-oceans, just as posing a major threat to marine organisms.</p><p>On account of the above, numerical modeling of underwater blowouts demands great computing power. High-resolution, long-term data bases of wind-ocean currents are needed to be able to properly model the trajectory of the spill at both regional (open sea) and local level (coastline), just as to account for temporal variability. Moreover, a large number of particles, just as a high-resolution grid, are unavoidable in order to ensure accurate modeling of oil concentrations, of utmost importance in risk assessment, so that threshold concentrations can be established (threshold concentrations tell you what level of exposure to a compound could harm marine organisms).</p><p>In this study, an innovative methodology has been accomplished for the purpose of optimizing modeling configuration: number of particles and grid resolution, in the modeling of an underwater blowout, with a view to accurately represent oil concentrations, especially when threshold concentrations are considered. In doing so, statistical analyses (dimensionality reduction and clustering techniques), just as numerical modeling, have been applied.</p><p>It is composed of the following partial steps: (i) classification of i representative clusters of forcing patterns (based on PCA and K-means algorithms) from long-term wind-ocean current hindcast data bases, so that forcing variability in the study area is accounted for; (ii) definition of j modeling scenarios, based on key blowout parameters (oil type, flow rate, etc.) and modeling configuration (number of particles and grid resolution); (iii) Lagrangian trajectory modeling of the combination of the i clusters of forcing patterns and the j modeling scenarios; (iv) sensitivity analysis of the Lagrangian trajectory model output: oil concentrations,  to modeling configuration; (v) finally, as a result, the optimal modeling configuration, given a certain underwater blowout (its key parameters), is provided.</p><p>It has been applied to a hypothetical underwater blowout in the North Sea, one of the world’s most active seas in terms of offshore oil and gas exploration and production. A 5,000 cubic meter per day-flow rate oil spill, flowing from the well over a 15-day period, has been modeled (assuming a 31-day period of subsequent drift for a 46-day modeling). Moreover, threshold concentrations of 0.1, 0.25, 1 and 10 grams per square meter have been applied in the sensitivity analysis. The findings of this study stress the importance of modeling configuration in accurate modeling of oil concentrations, in particular if lower threshold concentrations are considered.</p>


2021 ◽  
Author(s):  
David Christensen ◽  
Andrew Re

Abstract The National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) is Australia's independent expert regulator for health and safety, structural (well) integrity and environmental management for all offshore oil and gas operations and greenhouse gas storage activities in Australian waters, and in coastal waters where regulatory powers and functions have been conferred. The Australian offshore petroleum industry has been in operation since the early 1960s and currently has approximately 57 platforms, 11 floating facilities, 3,500km of pipelines and 1000 wells in operation. Many offshore facilities are now approaching the end of their operational lives and it is estimated that over the next 50 years decommissioning of this infrastructure will cost more than US$40.5 billion. Decommissioning is a normal and inevitable stage in the lifetime of an offshore petroleum project that should be planned from the outset and matured throughout the life of operations. While only a few facilities have been decommissioned in Australian waters, most of Australia's offshore infrastructure is now more than 20 years old and entering a phase where they require extra attention and close maintenance prior to decommissioning. When the NOGA group of companies entered liquidation in 2020 and the Australian Government took control of decommissioning the Laminaria and Corallina field development it became evident that there were some fundamental gaps in relation to decommissioning in the Australian offshore petroleum industry. There are two key focus areas that require attention. Firstly, regulatory reform including policy change and modification to regulatory practice. Secondly, the development of visible and robust decommissioning plans by Industry titleholders. The purpose of this paper is to highlight the importance and benefit of adopting good practice when planning for decommissioning throughout the life cycle of a petroleum project. Whilst not insurmountable, the closing of these gaps will ensure that Australia is well placed to deal with the decommissioning challenge facing the industry in the next 50 years.


Sign in / Sign up

Export Citation Format

Share Document