Harmful algal blooms caused by Phaeocystis globosa from 1997 to 2018 in Chinese coastal waters

2021 ◽  
Vol 173 ◽  
pp. 112949
Author(s):  
Kang Wang ◽  
Baohong Chen ◽  
Yahui Gao ◽  
Hui Lin
2021 ◽  
Vol 869 (1) ◽  
pp. 012068
Author(s):  
X Qin ◽  
X Chen ◽  
F Li ◽  
H Ya ◽  
D Zhu ◽  
...  

Abstract With the increased scale of marine aquaculture in the Beibu Gulf, as well as accelerating urbanization and industrialization, frequent harmful algal blooms (HABs) have occurred in this area, especially those formed by Phaeocystis globosa in the past several years. As the P. globosa bloom has been a serious marine ecological disaster in the Beibu Gulf, research on quick and effective methods to eliminate P. globosa blooms is a hot research topic. In this study, the bacteria Streptomyces yatensis B4503 combined with modified diatomite was used to prepare algicidal modified clay, which was then used to study the removal effect on P. globosa blooms in field culture enclosures. The results showed that after 6 h of treatment with algicidal modified clay, compared with the blank control group, the cell density and chlorophyll a content of P. globosa decreased by 26.86% and 64.03%, respectively, and they decreased by 75.23% and 84.81%, respectively, after 24 h. The study indicated that algicidal modified clay can be applied to eliminate HABs caused by P. globosa in coastal water.


Author(s):  
Jingyi Zhu ◽  
Yeyin Yang ◽  
Shunshan Duan ◽  
Dong Sun

Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuya Liu ◽  
Yichao Wang ◽  
Qing Xu ◽  
Mengjia Zhang ◽  
Nansheng Chen

Abstract Background Skeletonema species are prominent primary producers, some of which can also cause massive harmful algal blooms (HABs) in coastal waters under specific environmental conditions. Nevertheless, genomic information of Skeletonema species is currently limited, hindering advanced research on their role as primary producers and as HAB species. Mitochondrial genome (mtDNA) has been extensively used as “super barcode” in the phylogenetic analyses and comparative genomic analyses. However, of the 21 accepted Skeletonema species, full-length mtDNAs are currently available only for a single species, S. marinoi. Results In this study, we constructed full-length mtDNAs for six strains of five Skeletonema species, including S. marinoi, S. tropicum, S. grevillei, S. pseudocostatum and S. costatum (with two strains), which were isolated from coastal waters in China. The mtDNAs of all of these Skeletonema species were compact with short intergenic regions, no introns, and no repeat regions. Comparative analyses of these Skeletonema mtDNAs revealed high conservation, with a few discrete regions of high variations, some of which could be used as molecular markers for distinguishing Skeletonema species and for tracking the biogeographic distribution of these species with high resolution and specificity. We estimated divergence times among these Skeletonema species using 34 mtDNAs genes with fossil data as calibration point in PAML, which revealed that the Skeletonema species formed the independent clade diverging from Thalassiosira species approximately 48.30 Mya. Conclusions The availability of mtDNAs of five Skeletonema species provided valuable reference sequences for further evolutionary studies including speciation time estimation and comparative genomic analysis among diatom species. Divergent regions could be used as molecular markers for tracking different Skeletonema species in the fields of coastal regions.


Author(s):  
A.Y.A AlKindi ◽  
H.M.H. Al-Ghelani ◽  
S. Amer ◽  
Y.K Al-Akhzami

The Gulf of Oman, an ecologically and economically rich ecosystem, is frequently impacted by occurrences of harmful algal blooms. Recent studies indicate an increase in the number of causative species and harmful impacts. Many red tide incidents in Oman have been found leading to hypoxia. The frequent bloom forming species here are Karenia selliformis, Nitzschia pungens, Prorocentrum arabianum and Trichodesmium erythraeum. We review work carried out in this area, and we propose here a Management Action Plan for not only an effective monitoring system for harmful algal blooms (HABs), but also mitigation of their adverse impacts and rapid response system.   


Sign in / Sign up

Export Citation Format

Share Document