Dynamic responses of a ribbon floating bridge under moving loads

2012 ◽  
Vol 29 (1) ◽  
pp. 246-256 ◽  
Author(s):  
Shixiao Fu ◽  
Weicheng Cui
2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


Author(s):  
Jun Zhang ◽  
Chuan Liang ◽  
Ming-Kang Gou ◽  
Lin Li ◽  
Ying Zhang
Keyword(s):  

Author(s):  
Korkut Kaynardag ◽  
Giuseppe Battaglia ◽  
Chi Yang ◽  
Salvatore Salamone

This paper examines the vibrations of a rail span (rail section between two consecutive sleepers) during and after the passage of a rail car’s wheel as well as under impact hammer excitation. In literature, the dynamic response of railway tracks under moving loads has been studied extensively. Many of these studies focus on the responses in relation to displacement/force-time histories and wave propagation parameters. These responses are investigated for the time instants when rail car wheels transverse over the rail spans of interest. In this context, an investigation of responses in relation to modal parameters during and after moving loads might provide additional information. Such information can be used to examine how the loading and additional masses induced by the moving wheels affect the dynamic responses. To this end, field tests were carried out at Transportation Technology Center Inc. (TTCI) facility in Colorado, U.S. First, to find the flexural modes of a rail span under no loading, data was collected from three accelerometers placed on the span under vertical impact hammer excitation. Next, the accelerometers were placed underneath the rail span, and data was collected while a rail car traveled over the span. The signal segments corresponding to during and after a wheel passage were analyzed for the identification of modal parameters. The comparison of the results demonstrated that the frequencies of the rail span increased as the loading induced by the wheel increased.


2012 ◽  
Vol 594-597 ◽  
pp. 2802-2807
Author(s):  
Fu Liang Mei ◽  
Gui Ling Li

Dynamic response of an elastic-supported bridge under speed-varied moving loads was investigated. A mathematical model of vehicle-bridge coupled oscillation for an elastic-supported bridge was built up by means of 1/4 vehicle model (Mass-Spring-Mass) and Euler-Bernoulli beam theory. And then dynamic equations of vehicle-bridge coupled oscillation in matrix form were established using two former orders general coordinates of an elastic-supported beam and model superposition method. The influences of vehicle-bridge coupled vibration model, elastic-supported stiffness, entrance speeds and acceleration /deceleration of moving loads on the dynamic responses of bridges were studied. Vehicle-bridge coupled vibration model based on 1/4 vehicle model can more accurately describe the dynamic characters of bridges than that based on constant moving force model. Elastic-supported stiffness only has an impact on the fluctuation amplitudes of dynamic responses. The vehicle-induced impact factor is dependent on the entrance speeds, acceleration/deceleration of moving loads and elastic-supported stiffness.


Sign in / Sign up

Export Citation Format

Share Document