Dynamic Responses of Rail-Embankment-Foundation on High-Speed Railways under Moving Loads

Author(s):  
Fu-Chun Xue ◽  
Jian-Min Zhang
2012 ◽  
Vol 594-597 ◽  
pp. 1552-1556
Author(s):  
Wei Ye ◽  
Xiao Zhen Li ◽  
Hong Duan ◽  
Chun Sheng Shan ◽  
Xiao Han Liu

In this thesis, the dynamic responses of simply supported beam bridge in a double-line railway under bidirectional moving loads are mainly studied. To study the characteristics of Euler- Bernoulli beam, a train is simplified as a series of concentrated forces with fixed wheelbase.Structural dynamics is used to deduce the analytical expressions of vertical vibration of simply supported beam under bidirectional moving loads. By simulation software MATLAB, the numerical result of the dynamic responses of simply supported beam bridge could be obtained. Then the 48 meters simply supported beam bridge in a high-speed railway is analyzed, the dynamic responses of simply supported beam of bidirectional moving loads with different interarrival times are discussed.Finally, some general laws for the design of double-line railway bridge are gained.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2019 ◽  
Vol 258 ◽  
pp. 05005 ◽  
Author(s):  
Wivia Octarena Nugroho ◽  
Dina Rubiana Widarda ◽  
Oryza Herdha Dwyana

As the need of the train speed increased, the existing bridges need to be evaluated, especially in dynamic responses, which are deformation and acceleration. In this study, Cisomang Bridge is modeled and analyzed due to the high-speed train SJ X2 in varying speeds, 50 km/h, 100 km/h, 150 km/h, and 200 km/h. The used of tuned mass damper also will be varied on its setting and placing. The tuned mass dampers setting be varied based on the first or second natural frequency and the placing of tuned mass damper be varied based on maximum deformation of the first or second mode. Moreover, the tuned mass damper ratio will be varied 1% and 1.6%. For all speed variations, dynamic responses of structure without TMD still fulfil the Indonesian Government Criterion based on PM 60 - 2012 but do not meet requirement of comfort criteria based on DIN-Fachbericht 101. Furthermore, only for the speed train 50km/h dynamic responses of structure fulfil safety criteria based on Eurocode EN 1990:2002, whereas the other speed variations do not meet that requirement. In the use of TMD 1% mass ratio, the structure fulfils the safety criteria for all speed variations. In the use of TMD 1.6% mass ratio, all the structure fulfils the safety and comfort criteria except 100 km/h speed which only fulfils the safety criteria.


Author(s):  
Chunxia Zhu ◽  
Jay Katupitiya ◽  
Jing Wang

Purpose Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The purpose of this work is to analyze the effect of link deformation on the motion precision of parallel manipulators. Design/methodology/approach The flexible dynamics model of the links is first established by applying the Euler–Bernoulli beam theory and the assumed modal method. The rigid-flexible coupling equations of the parallel mechanism are further derived by using the Lagrange multiplier approach. The elastic energy resulting from spiral motion and link deformations are computed and analyzed. Motion errors of the 3-link torque-prismatic-torque parallel manipulator are then evaluated based on its inverse kinematics. The validation experiments are also conducted to verify the numerical results. Findings The lateral deformation and axial deformation are largest at the middle of the driven links. The axial deformation at the middle of the driven link is approximately one-tenth of the transversal deformation. However, the elastic potential energy of the transversal deformation is much smaller than the elastic force generated from axial deformation. Practical implications Knowledge on the relationship between link deformation and motion precision is useful in the design of parallel manipulators for high performing dynamic responses. Originality/value This work establishes the relationship between motion precision and the amount of link deformation in parallel manipulators.


Author(s):  
Hongmei Shi ◽  
Zujun Yu

Track irregularity is the main excitation source of wheel-track interaction. Due to the difference of speed, axle load and suspension parameters between track inspection train and the operating trains, the data acquired from the inspection car cannot completely reflect the real status of track irregularity when the operating trains go through the rail. In this paper, an estimation method of track irregularity is proposed using genetic algorithm and Unscented Kalman Filtering. Firstly, a vehicle-track vertical coupling model is established, in which the high-speed vehicle is assumed as a rigid body with two layers of spring and damping system and the track is viewed as an elastic system with three layers. Then, the static track irregularity is estimated by genetic algorithm using the vibration data of vehicle and dynamic track irregularity which are acquired from the inspection car. And the dynamic responses of vehicle and track can be solved if the static track irregularity is known. So combining with vehicle track coupling model of different operating train, the potential dynamic track irregularity is solved by simulation, which the operating train could goes through. To get a better estimation result, Unscented Kalman Filtering (UKF) algorithm is employed to optimize the dynamic responses of rail using measurement data of vehicle vibration. The simulation results show that the estimated static track irregularity and the vibration responses of vehicle track system can go well with the true value. It can be realized to estimate the real rail status when different trains go through the rail by this method.


Author(s):  
Xia Peng ◽  
Xian-Sheng Gong ◽  
Jin-Jun Liu

In a deep mine winding hoist system, the lateral oscillation of the catenary rope is an important evaluation index of orderly rope arrangement and engineering safety. Different boundary excitations will appear when the wire rope winds on symmetrical or asymmetrical grooves, which results in the different dynamic responses of the hoisting system. In this article, the vibration equations of a deep mine hoisting system are established by using the Hamilton principle, and excitation functions of different crossover zone layouts are deduced. The operation curves are introduced to conduct the experiment based on a certain experimental platform. The lateral oscillation of the catenary rope is recorded by high-speed cameras, and an effective image processing method is proposed to obtain the vibration response of a certain point in the catenary rope. The numerical simulations are compared with the experimental results to prove the vibration models derived in this article are valid. The models could provide reliable basis for the grooves type selection in deep mine hoisting.


Author(s):  
Nabilah Aisyah ◽  
Maaspaliza Azri ◽  
Auzani Jidin ◽  
M. Z. Aihsan ◽  
MHN Talib

<span>Since the early 1980s, fast torque dynamic control has been a subject of research in AC drives. To achieve superior torque dynamic control, two major techniques are used, namely Field Oriented Control (FOC) and Direct Torque Control (DTC), spurred on by rapid advances in embedded computing systems. Both approaches employ the space vector modulation (SVM) technique to perform the voltage source inverter into over modulation region for producing the fastest torque dynamic response. However, the motor current tends to increase beyond its limit (which can damage the power switches) during the torque dynamic condition, due to inappropriate flux level (i.e. at rated stator flux). Moreover, the torque dynamic response will be slower, particularly at high speed operations since the increase of stator flux will produce negative torque slopes more often. The proposed research aims to formulate an optimal switching modulator and produce the fastest torque dynamic response. In formulating the optimal switching modulator, the effects of selecting different voltage vectors on torque dynamic responses will be investigated. With greater number of voltage vectors offered in dual inverters, the identification of the most optimal voltage vectors for producing the fastest torque dynamic responses will be carried out based on the investigation. The main benefit of the proposed strategy is that it provides superior fast torque dynamic response which is the main requirements for many AC drive applications, e.g. traction drives, electric transportations and vehicles.</span>


Sign in / Sign up

Export Citation Format

Share Document