Experimental Investigation of the Modal Response of a Rail Span during and after Wheel Passage

Author(s):  
Korkut Kaynardag ◽  
Giuseppe Battaglia ◽  
Chi Yang ◽  
Salvatore Salamone

This paper examines the vibrations of a rail span (rail section between two consecutive sleepers) during and after the passage of a rail car’s wheel as well as under impact hammer excitation. In literature, the dynamic response of railway tracks under moving loads has been studied extensively. Many of these studies focus on the responses in relation to displacement/force-time histories and wave propagation parameters. These responses are investigated for the time instants when rail car wheels transverse over the rail spans of interest. In this context, an investigation of responses in relation to modal parameters during and after moving loads might provide additional information. Such information can be used to examine how the loading and additional masses induced by the moving wheels affect the dynamic responses. To this end, field tests were carried out at Transportation Technology Center Inc. (TTCI) facility in Colorado, U.S. First, to find the flexural modes of a rail span under no loading, data was collected from three accelerometers placed on the span under vertical impact hammer excitation. Next, the accelerometers were placed underneath the rail span, and data was collected while a rail car traveled over the span. The signal segments corresponding to during and after a wheel passage were analyzed for the identification of modal parameters. The comparison of the results demonstrated that the frequencies of the rail span increased as the loading induced by the wheel increased.

2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2011 ◽  
Vol 250-253 ◽  
pp. 3822-3826 ◽  
Author(s):  
Xian Mai Chen ◽  
Xia Xin Tao ◽  
Gao Hang Cui ◽  
Fu Tong Wang

The general track spectrum of Chinese main railway lines (ChinaRLS) and the track spectrum of American railway lines (AmericaRLS) are compared in terms of character of frequency domain, statistical property of time domain samples and dynamic performance. That the wavelength range of the ChinaRLS, which is characterized by the three levels according to the class of railway line, is less than AmericaRLS at common wave band of 1~50m is calculated. Simultaneously, the mean square values of two kinds of track spectra are provided at the detrimental wave bands of 5~10m, 10~20m, and so on. The time-histories of ChinaRLS and AmericaRLS are simulated according to the trigonometric method, and the digital statistical nature of simulated time samples is analyzed. With inputting the two kinds of time-histories into the vehicle-railway system, the comparative analysis of the two kinds of dynamic performances for ChinaRLS and AmericaRLS is done in terms of car body acceleration, rate of wheel load reduction, wheel/rail force, and the dynamic responses of track structure. The result shows that ChinaRLS can characterize the feature of the Chinese track irregularity better than AmericaRLS, the track irregularity with the ChinaRLS of 200km/h is superior to the AmericaRLS, and the track irregularity with the ChinaRLS of 160km/h corresponds to with the sixth of AmericaRLS.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950029 ◽  
Author(s):  
Jun Chen ◽  
Guo Ding ◽  
Stana Živanović

Developing a model for the dynamic force generated by a pedestrian’s foot on a supporting structure (single footfall trace model) is crucial to advanced numerical analysis and vibration serviceability assessment of the structure. A reliable model needs to reflect the inter-subject and intra-subject randomness of human walking. This paper introduces a stochastic single footfall trace model in the form of a Fourier series in which body weight, walking frequency, and the first eight harmonics are treated as random variables. An experiment used 73 test subjects, walking at a range of pacing frequencies, to record force time histories and the corresponding gait parameters. Two variability descriptors were used to indicate inter-subject and intra-subject randomness. Further statistical analysis identified the relationships between key parameters as well as the probability distribution functions of random variables. In the final step, an application of the proposed single footfall trace model was developed and tested. The proposed model represented the experimental data well in both time and frequency domains.


1982 ◽  
Vol 104 (2) ◽  
pp. 105-107 ◽  
Author(s):  
I. E. Eronini

A characterization of the dynamic interaction between an impacting tool and rock is presented. The analysis is based on the concept of rock fracture energy and on simple representations of the amount of fracturing and energy storage in the rock during fracture propagation. The governing equations are not complicated. They contain a small number of parameters and impose minimum restrictions on the form or sophistication of the model of the impacting tool. Simulation results are shown for bit-tooth drop tests on Indiana limestone under different values of the differential pressure across the rock face and for various heights of drop. The predicted dynamic force-penetration curves, force-time, displacement-time and velocity-time histories agree well with reported Laboratory data and demonstrate that the essential elements of tooth drop loading are adequately represented by the model.


Author(s):  
K. T. Feroz ◽  
S. O. Oyadiji

Abstract The phenomena of wave propagation in rods was studied both numerically and experimentally. The finite element (FE) code ABAQUS was used for the numerical study while PZT (lead zirconium titanate) sensors and a 50 MHz transient recorder were used experimentally to monitor and to capture the propagation of stress pulses. For the study of damage detection in the rods the analyses and the experiments were repeated by introducing slots in a fixed axial location of the rod. A longitudinal wave was induced in the rod via collinear impact which was modelled in the FE analyses using the force-time history computed from the classical Hertz contact theory. In the experimental measurements this was achieved by a spherical ball impact at one plane end of the rods. It is shown that the predicted and measured strain-time histories for the defect-free rod and for the rods with defect correlate quite well. These results also show that defects can be located using the wave propagation phenomena. A regression analysis technique of the predicted and measured strain histories of the defect free rod and of the rod with defect was also performed. The results show that this technique is more efficient for smaller defects. In particular, it is shown that the area enclosed by the regression curve increases as the defect size increases.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350008 ◽  
Author(s):  
J. SADEGHI ◽  
M. FESHARAKI

Attention is drawn to the fact that the recent increase in axle loads, speed and traffic volume in railway tracks, as well as concerns over passengers' riding comfort and safety have resulted in fresh challenges that are needed to be addressed. These challenges can only be successfully tackled with a more accurate modeling of the dynamic behavior of railway tracks. Although a significant amount of research involving mathematical modeling of railway track dynamics has been conducted in the last two decades, the nonlinearity of track support systems has not been given sufficient attention. This paper is concerned with the effect of nonlinearity of the support sub-layers on the dynamic responses of the railway track. To this end, a railway track model that considers the nonlinear properties of the track sub-layers is developed. Then, a field investigation into the dynamic responses of the railway track system under moving trains is conducted. The effect of the nonlinearity properties of the track support system on the track responses is investigated by comparing the results obtained by the numerical model, with or without consideration of track support nonlinearity, with those from the field tests. It is illustrated that consideration of the nonlinear properties of the track support system improves the accuracy of the calculated responses by a factor of three. It is also shown that the train axle loads and track accumulative loading have a significant effect on the nonlinearity of the track support system and, as a result, on the modeling of track responses.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Laikuang Lin ◽  
Yimin Xia ◽  
Zhengguang Li ◽  
Caizhang Wu ◽  
Yongliang Cheng ◽  
...  

AbstractThe cutterhead of a full-face rock tunnel boring machine (TBM) is constantly subjected to varying impact and dynamic loads during tunneling processes, resulting in relatively large vibrations that could easily lead to fatigue cracking of the entire machine and affect the tunneling performance and efficiency. To explore the dynamic characteristics of the TBM mainframe, a TBM from a water-diversion project is investigated in this research. According to the TBM vibration transmission route, an equivalent dynamic model of the TBM mainframe is established using the lumped-mass method in which the relevant dynamic parameters are solved. Additionally, the dynamic response characteristics of the TBM mainframe are analyzed. The results indicate that the vibration levels in three directions are approximately the same, the multi-directional vibration of the cutterhead is more intense than that of other components, and the vibration and external excitation exhibit identical change trends. A set of vibration field tests is performed to analyze the in situ dynamic responses of the mainframe and verify the correctness of the dynamic model. The theoretical and measured acceleration values of the TBM mainframe have the same magnitude, which proves the validity of the dynamic model and its solution. The aforementioned results provide an important theoretical value and practical significance for the design and assessment of the TBM mainframe.


2017 ◽  
Author(s):  
Duruo Huang ◽  
Wenqi Du

Abstract. In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of strong-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database, or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard, and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are yet available. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.


Sign in / Sign up

Export Citation Format

Share Document