Effect of phase transformation on densification kinetics and properties of spark plasma sintered Al0.7CoCrFeNi high-entropy alloy

2020 ◽  
Vol 160 ◽  
pp. 110098 ◽  
Author(s):  
Siyao Xie ◽  
Ruidi Li ◽  
Tiechui Yuan ◽  
Mei Zhang ◽  
Minbo Wang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

AbstractIn this work, we studied the brazing characteristics of Al2O3 and 3D printed Ti–6Al–4V alloys using a novel equiatomic AlZnCuFeSi high entropy alloy filler (HEAF). The HEAF was prepared by mechanical alloying of the constituent powder and spark plasma sintering (SPS) approach. The filler microstructure, wettability and melting point were investigated. The mechanical and joint strength properties were also evaluated. The results showed that the developed AlZnCuFeSi HEAF consists of a dual phase (Cu–Zn, face-centered cubic (FCC)) and Al–Fe–Si rich (base centered cubic, BCC) phases. The phase structure of the (Cu–Al + Ti–Fe–Si)/solid solution promises a robust joint between Al2O3 and Ti–6Al–4V. In addition, the joint interfacial reaction was found to be modulated by the brazing temperature and time because of the altered activity of Ti and Zn. The optimum shear strength reached 84 MPa when the joint was brazed at 1050 °C for 60 s. The results can be promising for the integration of completely different materials using the entropy driven fillers developed in this study.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2225 ◽  
Author(s):  
Martin Löbel ◽  
Thomas Lindner ◽  
Thomas Lampke

High hardness and good wear resistance have been revealed for the high-entropy alloy (HEA) system AlCoCrFeNiTi, confirming the potential for surface protection applications. Detailed studies to investigate the microstructure and phase formation have been carried out using different production routes. Powder metallurgical technologies allow for much higher flexibility in the customisation of materials compared to casting processes. Particularly, spark plasma sintering (SPS) enables the fast processing of the feedstock, the suppression of grain coarsening and the production of samples with a low porosity. Furthermore, solid lubricants can be incorporated for the improvement of wear resistance and the reduction of the coefficient of friction (COF). This study focuses on the production of AlCoCrFeNiTi composites comprising solid lubricants. Bulk materials with a MoS2 content of up to 15 wt % were produced. The wear resistance and COF were investigated in detail under sliding wear conditions in ball-on-disk tests at room temperature and elevated temperature. At least 10 wt % of MoS2 was required to improve the wear behaviour in both test conditions. Furthermore, the effects of the production route and the content of solid lubricant on microstructure formation and phase composition were investigated. Two major body-centred cubic (bcc) phases were detected in accordance with the feedstock. The formation of additional phases indicated the decomposition of MoS2.


Materia Japan ◽  
2018 ◽  
Vol 57 (7) ◽  
pp. 333-337
Author(s):  
Soo-Hyun Joo ◽  
Takeshi Wada ◽  
Hidemi Kato ◽  
Soon-Jik Hong ◽  
Hyoung Seop Kim

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1268 ◽  
Author(s):  
Natalia Shkodich ◽  
Alexey Sedegov ◽  
Kirill Kuskov ◽  
Sergey Busurin ◽  
Yury Scheck ◽  
...  

For the first time, a powder of refractory body-centered cubic (bcc) HfTaTiNbZr-based high-entropy alloy (RHEA) was prepared by short-term (90 min) high-energy ball milling (HEBM) followed by spark plasma sintering (SPS) at 1300 °C for 10 min and the resultant bulk material was characterized by XRD and SEM/EDX. The material showed ultra-high Vickers hardness (10.7 GPa) and a density of 9.87 ± 0.18 g/cm³ (98.7%). Our alloy was found to consist of HfZrTiTaNb-based solid solution with bcc structure as a main phase, a hexagonal closest packed (hcp) Hf/Zr-based solid solution, and Me2Fe phases (Me = Hf, Zr) as minor admixtures. Principal elements of the HEA phase were uniformly distributed over the bulk of HfTaTiNbZr-based alloy. Similar alloys synthesized without milling or in the case of low-energy ball milling (LEBM, 10 h) consisted of a bcc HEA and a Hf/Zr-rich hcp solid solution; in this case, the Vickers hardness of such alloys was found to have a value of 6.4 GPa and 5.8 GPa, respectively.


Author(s):  
Marcello Cabibbo ◽  
Filip Průša ◽  
Alexandra Šenková ◽  
Andrea Školáková ◽  
Vojtěch Kučera ◽  
...  

High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found.


Sign in / Sign up

Export Citation Format

Share Document