Effect of the nanostructuring by high-pressure torsion process on the secondary phase precipitation in UNS S32750 Superduplex stainless steel

2021 ◽  
pp. 111639
Author(s):  
Alisiya Biserova-Tahchieva ◽  
Dipanwita Chatterjee ◽  
Antonius T.J. van Helvoort ◽  
Núria Llorca-Isern ◽  
Jose Maria Cabrera
2012 ◽  
Vol 552 ◽  
pp. 194-198 ◽  
Author(s):  
I. Shuro ◽  
H.H. Kuo ◽  
T. Sasaki ◽  
K. Hono ◽  
Y. Todaka ◽  
...  

2016 ◽  
Vol 657 ◽  
pp. 215-223 ◽  
Author(s):  
Jenő Gubicza ◽  
Moustafa El-Tahawy ◽  
Yi Huang ◽  
Hyelim Choi ◽  
Heeman Choe ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


2012 ◽  
Vol 28 (3) ◽  
pp. 295-302 ◽  
Author(s):  
J M Pardal ◽  
S S M Tavares ◽  
M P Cindra Fonseca ◽  
M R da Silva ◽  
M L R Ferreira

2020 ◽  
Vol 55 (35) ◽  
pp. 16791-16805
Author(s):  
Jenő Gubicza ◽  
Moustafa El-Tahawy ◽  
János L. Lábár ◽  
Elena V. Bobruk ◽  
Maxim Yu Murashkin ◽  
...  

Abstract An ultrafine-grained (UFG) Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by high pressure torsion (HPT) technique and then aged at 120 and 170 °C for 2 h. The changes in the microstructure due to this artificial aging were studied by X-ray diffraction and transmission electron microscopy. It was found that the HPT-processed alloy has a small grain size of about 200 nm and a high dislocation density of about 8 × 1014 m−2. The majority of precipitates after HPT are Guinier–Preston (GP) zones with a size of ~ 2 nm, and only a few large particles were formed at the grain boundaries. Annealing at 120 and 170 °C for 2 h resulted in the formation of stable MgZn2 precipitates from a part of the GP zones. It was found that for the higher temperature the fraction of the MgZn2 phase was larger and the dislocation density in the Al matrix was lower. The changes in the precipitates and the dislocation density due to aging were correlated to the hardness evolution. It was found that the majority of hardness reduction during aging was caused by the annihilation of dislocations and some grain growth at 170 °C. The aging effect on the microstructure and the hardness of the HPT-processed specimen was compared to that observed for the UFG sample processed by equal-channel angular pressing. It was revealed that in the HPT sample less secondary phase particles formed in the grain boundaries, and the higher amount of precipitates in the grain interiors resulted in a higher hardness even after aging.


2010 ◽  
Vol 654-656 ◽  
pp. 334-337 ◽  
Author(s):  
Innocent Shuro ◽  
Minoru Umemoto ◽  
Yoshikazu Todaka ◽  
Seiji Yokoyama

SUS 304 austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation to give a two phase structure of austenite (γ) and martensite (α') by the transformation γα'. The phase transformation was accompanied by an increase in hardness (Hv) from 1.6 GPa in the as annealed form to 5.4 GPa in the deformed state. Subsequent annealing in temperature range 250oC to 450oC resulted in an increase in both α' volume fraction and hardness (6.4 GPa). Annealing at 600oC resulted in a decrease in α' volume fraction hardness.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1553
Author(s):  
Shahir Mohd Mohd Yusuf ◽  
Ying Chen ◽  
Nong Gao

High-pressure torsion (HPT) is known as an effective severe plastic deformation (SPD) technique to produce bulk ultrafine-grained (UFG) metals and alloys by the application of combined compressive force and torsional shear strains on thin disk samples. In this study, the microstructures and microhardness evolution of an additively manufactured (AM) 316L stainless steel (316L SS) processed through 5 HPT revolutions are evaluated at the central disk area, where the effective shear strains are relatively low compared to the peripheral regions. Scanning electron microscopy (SEM) analysis showed that the cellular network sub-structures in AM 316L SS were destroyed after 5 HPT revolutions. Transmission electron microscopy (TEM) observations revealed non-equilibrium ultrafine grained (UFG) microstructures (average grain size: ~115 nm) after 5 revolutions. Furthermore, energy dispersive x-ray spectroscopy (EDX) analysis suggested that spherical Cr-based nano-silicates are also found in the as-received condition, which are retained even after HPT processing. Vickers microhardness (HV) measurements indicated significant increase in average hardness values from ~220 HV before HPT processing to ~560 HV after 5 revolutions. Quantitative X-ray diffraction (XRD) patterns exhibit a considerable increase in dislocation density from ~0.7 × 1013 m−2 to ~1.04 × 1015 m−2. The super-high average hardness increment after 5 HPT revolutions is predicted to be attributed to the UFG grain refinement, significant increase in dislocation densities and the presence of the Cr-based nano-silicates, according to the model established based on the linear additive theory.


Sign in / Sign up

Export Citation Format

Share Document