Carbide formation accompanying internal nitridation of austenitic stainless steel

2021 ◽  
pp. 111662
Author(s):  
Alice M. Young ◽  
Milo V. Kral ◽  
Catherine M. Bishop
CORROSION ◽  
10.5006/3678 ◽  
2020 ◽  
Author(s):  
Daisuke Takazaki ◽  
Toshihiro Tsuchiyama ◽  
Ryosuke Komoda ◽  
Mohsen Dadfarnia ◽  
Brian Somerday ◽  
...  

The objective of this study is to derive mechanistic insight into the degradation of metals in high-temperature hydrogen in order to enable the safety of evolving hydrogen technologies that operate at elevated temperature. Creep testing was carried out in argon and hydrogen gases under absolute pressure of 0.12 MPa at 873 K. The material was JIS SUS304 austenitic stainless steel. Results revealed that the creep life (time-to-failure) and creep ductility (strain-to-failure) of the SUS304 in hydrogen gas and in argon displayed opposite trends. While the creep life (time-to-failure) of the SUS304 in hydrogen gas was significantly shorter than that in argon, creep ductility (strain-to-failure) was higher in hydrogen. Associated with the relatively higher creep ductility, evidence of transgranular microvoid coalescence was more prevalent on fracture surfaces produced in hydrogen compared to those produced in argon. In addition, analysis of the steady state creep relationships in hydrogen and argon indicated that the same creep mechanism operated in the two environments, which was deduced as dislocation creep. Regarding the mechanisms governing reduced creep life in hydrogen, the effects of decarburization, carbide formation and the hydrogen-enhanced localized plasticity (HELP) mechanism were investigated. It was confirmed that these effects were not responsible for the reduced creep life in hydrogen, at least within the creep life range of this study. Alternately, the plausible role of hydrogen was to enhance the vacancy density, which led to magnified lattice diffusion (self-diffusion) and associated dislocation climb. As a consequence, hydrogen accelerated the creep strain rate and shortened the creep life.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Akinlabi Oyetunji ◽  
Muideen A Bodude ◽  
Wasiu A Ayoola ◽  
Bolarinwa J Kutelu

The effects of welding power input on the microstructural characteristics and impact behaviour of the Heat Affected Zone (HAZ) of type 304L austenitic stainless steel were investigated. This is with a view to optimize the welding process and ensure high weldment integrity of the heat affected zone.  Chemical analysis of the as-received 304L austenitic stainless steel was determined using an Optical Emission Spectrometry AR 4 30 metal analyzer. Thereafter, 30 samples of the as-received 304L austenitic stainless steel plate with dimensions  of 70 mm length, 45 mm breadth and 8 mm thickness  were cut and labeled into A, B and C each of 10 numbers. The grouped samples were further cut into two equal halves with hacksaw and welded using Gas Metal Arc Welding (GTAW) process and 304L electrode to produce butt joint HAZ square geometry samples. The obtained HAZ and as-received samples were machined to standard charpy impact test specimens.  Also, the HAZ and as-received specimens were prepared for microscopy studies using optical microscopy. Results obtained showed that the microstructures are composed majorly of mixture of austenite and ferrite phases, also variations in volume fraction and grain size of the phases were observed under varied range of power input. In addition, chromium carbide formation and precipitation due to sensitization was seen at the grain boundaries. Optimum impact toughness (IT) of 42 J was obtained for HAZ sample at power input of 12.0 KW while the least IT of 39 J was obtained from sample welded using power input of 4.6 KW as compared with the as-received with IT of 58 J.Keywords - 304L austenitic stainless steel; gas metal arc welding; impact toughness; microstructures;


Author(s):  
R. Gonzalez ◽  
L. Bru

The analysis of stacking fault tetrahedra (SFT) in fatigued metals (1,2) is somewhat complicated, due partly to their relatively low density, but principally to the presence of a very high density of dislocations which hides them. In order to overcome this second difficulty, we have used in this work an austenitic stainless steel that deforms in a planar mode and, as expected, examination of the substructure revealed planar arrays of dislocation dipoles rather than the cellular structures which appear both in single and polycrystals of cyclically deformed copper and silver. This more uniform distribution of dislocations allows a better identification of the SFT.The samples were fatigue deformed at the constant total strain amplitude Δε = 0.025 for 5 cycles at three temperatures: 85, 293 and 773 K. One of the samples was tensile strained with a total deformation of 3.5%.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Sign in / Sign up

Export Citation Format

Share Document