Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy

2007 ◽  
Vol 101 (2-3) ◽  
pp. 480-485 ◽  
Author(s):  
K.H. Yang ◽  
M.D. Ger ◽  
W.H. Hwu ◽  
Y. Sung ◽  
Y.C. Liu
2006 ◽  
Vol 15-17 ◽  
pp. 473-478
Author(s):  
Li Qun Bai ◽  
Di Li ◽  
Bao Lan Guo ◽  
Min Guo

The different chrome-free chemical conversion coatings were prepared on AZ91D magnesium alloy and SEM was used to observe the surface. The corrosion behaviors of die-casting AZ91D magnesium alloy with different coating in chloride environment were investigated by hydrogen gas evolution in immersion test, salt spray test and electrochemical measurement. The results showed that the corrosion resistance of magnesium alloy treated with two-step chemical conversion and sealing was the highest and was comparable with that of chromating, and followed by two-step chemical conversion treatment without sealing. The one-step chemical conversion treatment had the lowest corrosion resistance. Polarization and EIS characteristics in 5% NaCl solution depended on the type of surface treatment and correlated well with the order of corrosion resistance. Contrasted with one-step chemical conversion coating, the coating of two-step chemical conversion with sealing on magnesium alloy had more excellent corrosion resistance because the |Z| increased, the corrosion area was decreased and the time of the first pitting occurrence was prolonged. It is expected that this experiment can provide a foundation for designing more super chemical conversion coating to replacing the chromate conversion.


2007 ◽  
Vol 546-549 ◽  
pp. 555-558
Author(s):  
Li Qun Bai ◽  
Di Li ◽  
Min Guo ◽  
Jing Xin

Rare earth chemical conversion coating of Mg alloys was studied. Corrosion and electrochemical behavior in chloride environment were investigated with tests of evolution of hydrogen and electrochemical measurements. The surface morphologies and composition of rare earth conversion coating were studied through SEM, EDAX and XPS. The results showed that rare earth conversion coatings could improve corrosion resistance and their corrosion resistance was comparable with that of chromate coatings (HB/Z5078278). This result was further proved by Polarization and EIS.


2003 ◽  
Vol 172 (2-3) ◽  
pp. 227-232 ◽  
Author(s):  
Manuele Dabalà ◽  
Katya Brunelli ◽  
Enrico Napolitani ◽  
Maurizio Magrini

2019 ◽  
Vol 19 (6) ◽  
pp. 3487-3494 ◽  
Author(s):  
Bin Liu ◽  
Yi Zhao ◽  
Liang Li ◽  
Yafei Feng ◽  
Zhigang Fang ◽  
...  

An environment-friendly non-chromium chemical conversion coating was obtained from fluozirconate/fluotitanate acidic solution for the corrosion protection of AA 5083. The surface morphology, composition, electrochemical behavior and corrosion resistance of this coating were investigated. The coating was found to be a homogeneous and dense layer consisting of nano-size particles, of which the major component was compound oxides consisted by Al, Mg, Zr, Ti, F and O. The results of electrochemical measurements, immersion and natural salt spray (NSS) tests demonstrated that the corrosion resistance of the AA 5083 H-116 was improved by the nano-sized non-chromium chemical conversion coating considerably, which was most attributed to the great inhibitive action on the anodic dissolution by acting as a protective barrier layer.


2016 ◽  
Vol 40 (2) ◽  
pp. 1347-1353 ◽  
Author(s):  
Cong-cong Jiang ◽  
Gui-yong Xiao ◽  
Xian Zhang ◽  
Rui-fu Zhu ◽  
Yu-peng Lu

A uniform fine-crystalline structure is obtained upon PCC coating on 35CrMnSi with Fe2+ curing (b).


2012 ◽  
Vol 210 ◽  
pp. 156-165 ◽  
Author(s):  
Yougui Chen ◽  
Ben Li Luan ◽  
Guang-Ling Song ◽  
Qi Yang ◽  
David M. Kingston ◽  
...  

2010 ◽  
Vol 129-131 ◽  
pp. 467-471
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

A chrome-free chemical conversion coating was prepared using stannous sulfate as the main salt. The morphology of the chemical conversion surface layer was observed by scanning electron microscopy (SEM). Coating composition and the microcosmic phase structure were characterized using energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) respectively. Electrochemical method and dropping test were used to study the coatings corrosion resistance. The results indicated that the tin salts conversion coating is a crystal structure material that composites with Sn-F-O-Al et al., the surface appears as a accumulation of spherical particles, the crystallinity of conversion coating is better than uncoated sample obviously, the corrosion resistance has improved too.


Sign in / Sign up

Export Citation Format

Share Document