Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code

2019 ◽  
Vol 223 ◽  
pp. 209-219 ◽  
Author(s):  
Shams A.M. Issa ◽  
H.O. Tekin ◽  
Reda Elsaman ◽  
Ozge Kilicoglu ◽  
Yasser B. Saddeek ◽  
...  
2021 ◽  
Vol 196 ◽  
pp. 110566
Author(s):  
Jamila S. Alzahrani ◽  
Miysoon A. Alothman ◽  
Canel Eke ◽  
Hanan Al-Ghamdi ◽  
Dalal Abdulldh Aloraini ◽  
...  

2020 ◽  
Vol 9 (6) ◽  
pp. 12335-12345 ◽  
Author(s):  
A.M.A. Mostafa ◽  
Hesham M.H. Zakaly ◽  
Mariia Pyshkina ◽  
Shams A.M. Issa ◽  
H.O. Tekin ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Yi-Kang Lee

Abstract The ICRP 110 adult male and female voxel phantoms are the official computational models representing the ICRP (International Commission on Radiological Protection) Reference Male and Reference Female. In 2018, the Working Group 6 (WG6) of European Radiation Dosimetry Group (EURADOS) organized a study on the usage of the ICRP voxel reference phantoms. Organ dose calculation tasks with radiation transport codes were proposed in occupational, environmental, and medical dosimetry. The TRIPOLI-4 Monte Carlo radiation transport code has been widely used in radiation shielding, criticality safety, and reactor physics fields for supporting French nuclear energy research and industrial applications. To enhance the application fields of TRIPOLI-4, the 2018 EURADOS-WG6 tasks are being taken into account by using different features of the TRIPOLI-4 code. In this work, the ICRP reference voxel phantoms were first adapted into TRIPOLI-4. More than 14 × 106 voxels were represented in a mixed lattice geometry including 140 organs-tissues and 52 tissue media. Diverse exposure scenarios were then investigated by using 60Co and 241Am gamma-ray sources, 16N beta source, and 10 keV neutron source. The TRIPOLI-4 standard nuclear data library was utilized on these neutron, photon, electron, and positron-coupled transport calculations. Energy deposition estimators for electron, positron, neutron, and photon coupled with mesh tally options were used to calculate the organ absorbed dose DT and the effective dose E. TRIPOLI-4 calculation methods and primary results for the EURADOS-WG6 voxel phantom exercise on organ dose study tasks are reported here.


2018 ◽  
Vol 170 ◽  
pp. 01019
Author(s):  
Jérôme M. Verbeke ◽  
Odile Petit ◽  
Abdelhazize Chebboubi ◽  
Olivier Litaize

Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared to experimental results. For 240Pu(sf), the measured correlations were used to tune the model parameters.


2021 ◽  
Author(s):  
A. El-Denglawey ◽  
Shams A.M. Issa ◽  
Yasser B. Saddeek ◽  
Huseyin O. Tekin ◽  
Hesham M.H. Zakaly

Abstract This work aimed to investigate the impact of Lead-fluoride based glasses via theoretical and simulation techniques on mechanical and radiation shielding parameters. Accordingly, a glass composition PbF2 blended with TeO2-B2O3-Bi2O3 glasses were synthesised by using melt-quenching method. Using Fluka Monte Carlo code, the radiation shielding properties have measured. Moreover. Comparatively higher density PbF80= 6.163g/cm3 with 80 mol % Bi2O3, greater µ, µm and Zeff and lower T1/2, l, tenth value layer values achieved for TeO2-B2O3-Bi2O3/PbF2 glass pointed it out as the best shield of gamma. Besides, the computed effective removal cross-sections against fast neutrons (ΣR) observed that the PbF80 sample has commensurately greater with value 5.2954 (cm-1) The results observed that the variation Bi2O3/PbF2 improves the gamma protection ability of Lead-fluoride based glasses. The longitudinal modulus-L, shear modulus-S, bulk modulus-K, and Young’s modulus-Y raised from 15.89 to 25.9 -GPa, from 8.49 to 12.09 -GPa, from 4.58 to 9.77 -GPa, and from 15.74 to 25.69 -GPa, respectively. The results indicate that the highest Bi2O3/PbF2 ratio encoded PbF80 has the best shielding and mechanical competence with measurable physical properties.


Sign in / Sign up

Export Citation Format

Share Document