Reduction in electrical resistivity of bismuth selenide single crystal via Sn and Te co-doping

Author(s):  
Ganesh Shridhar Hegde ◽  
A.N. Prabhu ◽  
C.F. Yang ◽  
Y.K. Kuo
2020 ◽  
pp. 117877
Author(s):  
Zixuan Fang ◽  
Hao Yu ◽  
Bo Zhang ◽  
Dapeng Jiang ◽  
Qinghui Wu ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Gennady V. Shilov ◽  
Elena I. Zhilyaeva ◽  
Sergey M. Aldoshin ◽  
Alexandra M Flakina ◽  
Rustem B. Lyubovskii ◽  
...  

Electrical resistivity measurements of a dual layered organic conductor (ET)4ZnBr4(1,2-C6H4Cl2) above room temperature show abrupt changes in resistivity at 320 K. Single-crystal X-ray diffraction studies in the 100-350 K range...


2004 ◽  
Vol 848 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Erin E. Erickson ◽  
Monica Moldovan ◽  
David P. Young ◽  
Julia Y. Chan

AbstractA new member of the LnMIn5 family, ErCoIn5, has been synthesized by a flux-growth method. The structure of ErCoIn5 was determined by single crystal X-ray diffraction. It crystallizes in the tetragonal space group P4/mmm, Z = 1, with lattice parameters a = 4.5400(4) and c = 7.3970(7) Å, and V = 152.46(2) Å3. Electrical resistivity data show metallic behavior. Magnetic susceptibility measurements show this compound to be antiferromagnetic with TN = 5.1 K. We compare these experimental results with those of LaCoIn5 in an effort to better understand the effect of the structural trends observed on the transport and magnetic properties.


1998 ◽  
Vol 167 (2) ◽  
pp. 443-448
Author(s):  
H. Tomioka ◽  
H. Yoshizawa ◽  
K. Suzuki ◽  
Yu.V. Milman ◽  
N. A. Krapivka ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Svetlana P. Kobeleva ◽  
Ilya M. Anfimov ◽  
Vladimir S. Berdnikov ◽  
Tatyana V. Kritskaya

Electrical resistivity distribution maps have been constructed for single crystal silicon wafers cut out of different parts of Czochralski grown ingots. The general inhomogeneity of the wafers has proven to be relatively high, the resistivity scatter reaching 1–3 %. Two electrical resistivity distribution inhomogeneity types have been revealed: azimuthal and radial. Experiments have been carried out for crystal growth from transparent simulating fluids with hydrodynamic and thermophysical parameters close to those for Czochralski growth of silicon single crystals. We show that a possible cause of azimuthal electrical resistivity distribution inhomogeneity is the swirl-like structure of the melt under the crystallization front (CF), while a possible cause of radial electrical resistivity distribution inhomogeneity is the CF curvature. In a specific range of the Grashof, Marangoni and Reynolds numbers which depend on the ratio of melt height and growing crystal radius, a system of well-developed radially oriented swirls may emerge under the rotating CF. In the absence of such swirls the melt is displaced from under the crystallization front in a homogeneous manner to form thermal and concentration boundary layers which are homogeneous in azimuthal direction but have clear radial inhomogeneity. Once swirls emerge the melt is displaced from the center to the periphery, and simultaneous fluid motion in azimuthal direction occurs. The overall melt motion becomes helical as a result. The number of swirls (two to ten) agrees with the number of azimuthally directed electrical resistivity distribution inhomogeneities observed in the experiments. Comparison of numerical simulation results in a wide range of Prandtl numbers with the experimental data suggests that the phenomena observed in transparent fluids are universal and can be used for theoretical interpretation of imperfections in silicon single crystals.


1976 ◽  
Vol 31 (2) ◽  
pp. 212
Author(s):  
Constantin Papastaikoudis

Abstract The electrical resistivity of thin single crystal aluminium samples has been measured in a transverse magnetic field at 4.2 K. The magnetoresistance shows Sondheimer and mag-netic breakdown oscillations.


ChemInform ◽  
2010 ◽  
Vol 30 (1) ◽  
pp. no-no
Author(s):  
T. SHISHIDO ◽  
K. KUDOU ◽  
S. OKADA ◽  
J. YE ◽  
M. OKU ◽  
...  

2012 ◽  
Vol 59 (3) ◽  
pp. 612-618 ◽  
Author(s):  
Boris L. Glebov ◽  
Kelly Simmons-Potter ◽  
Brian P. Fox ◽  
Dorothy C. Meister

Sign in / Sign up

Export Citation Format

Share Document