scholarly journals Possible causes of electrical resistivity distribution inhomogeneity in Czochralski grown single crystal silicon

2019 ◽  
Vol 5 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Svetlana P. Kobeleva ◽  
Ilya M. Anfimov ◽  
Vladimir S. Berdnikov ◽  
Tatyana V. Kritskaya

Electrical resistivity distribution maps have been constructed for single crystal silicon wafers cut out of different parts of Czochralski grown ingots. The general inhomogeneity of the wafers has proven to be relatively high, the resistivity scatter reaching 1–3 %. Two electrical resistivity distribution inhomogeneity types have been revealed: azimuthal and radial. Experiments have been carried out for crystal growth from transparent simulating fluids with hydrodynamic and thermophysical parameters close to those for Czochralski growth of silicon single crystals. We show that a possible cause of azimuthal electrical resistivity distribution inhomogeneity is the swirl-like structure of the melt under the crystallization front (CF), while a possible cause of radial electrical resistivity distribution inhomogeneity is the CF curvature. In a specific range of the Grashof, Marangoni and Reynolds numbers which depend on the ratio of melt height and growing crystal radius, a system of well-developed radially oriented swirls may emerge under the rotating CF. In the absence of such swirls the melt is displaced from under the crystallization front in a homogeneous manner to form thermal and concentration boundary layers which are homogeneous in azimuthal direction but have clear radial inhomogeneity. Once swirls emerge the melt is displaced from the center to the periphery, and simultaneous fluid motion in azimuthal direction occurs. The overall melt motion becomes helical as a result. The number of swirls (two to ten) agrees with the number of azimuthally directed electrical resistivity distribution inhomogeneities observed in the experiments. Comparison of numerical simulation results in a wide range of Prandtl numbers with the experimental data suggests that the phenomena observed in transparent fluids are universal and can be used for theoretical interpretation of imperfections in silicon single crystals.

1996 ◽  
Vol 438 ◽  
Author(s):  
S. J. Morris ◽  
B. Obradovic ◽  
S.-H. Yang ◽  
A. F. Tasch ◽  
L. Rubin

AbstractAn electronic stopping power model for boron, arsenic, and phosphorus ion implantation into single-crystal Si is reported over the energy range from a few keV to several MeV, for both offand on-axis implant angles relative to the <100> crystallographic direction. Combined with previously developed models for damage accumulation, this model allows physically-based simulation of 3-D profiles over an extremely wide range of implant conditions. In particular, this allows modeling of MeV implants which are being used more and more frequently.


1992 ◽  
Vol 283 ◽  
Author(s):  
Akif Sultan ◽  
Shubneesh Batra ◽  
Melvyn Lobo ◽  
Keunhyung Park ◽  
Sanjay Banerjee

ABSTRACTIn the present study we have modeled the diffusion of boron in single crystal silicon from an ion-implanted polysilicon film deposited on a single crystal silicon substrate. Modeling has been done for both BF2 and boron implants in the polysilicon layer. A new phenomenological model for a diffusivity has been implemented in the PEPPER simulation program using an effective concentration-dependent diffusivity approach. The effective diffusivities of boron in single crystal silicon have been extracted using Boltzmann-Matano analysis. The modeling has been implemented for a wide range of furnace anneal conditions (800°C to 950°C, from 30 min. to 6 hours), and implant conditions (BF2 doses varied from 5×1015 to 2×10'16 cm-2 at 70 keV, boron dose of 5×1015 cm-2 at 20 keV).


1988 ◽  
Vol 140 ◽  
Author(s):  
J.H. Ahn ◽  
S. Danyluk

AbstractThis paper describes the use of electrical resistivity to quantify the damage produced asa result of the scratching of single crystal silicon.The change in resistivity was measured as a function of time as a scratching diamond passed between four electrical contacts of a specially designed printed circuit and while thesilicon was heated to temperatures up to 300ºC. The data shows that the resistivity increases during scratching and reaches a steady state value if the silicon temperatureis below 200ºC. The conductivity recovers when the silicon temperature is 200ºC.


2010 ◽  
Vol 53 (5) ◽  
pp. 538-541
Author(s):  
V. M. Vladimirov ◽  
E. F. Grinin ◽  
M. E. Sergii ◽  
V. N. Shepov

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 559 ◽  
Author(s):  
Mohammad Islam ◽  
Ran Wei ◽  
Jaesung Lee ◽  
Yong Xie ◽  
Soumyajit Mandal ◽  
...  

Self-sustained feedback oscillators referenced to MEMS/NEMS resonators have the potential for a wide range of applications in timing and sensing systems. In this paper, we describe a real-time temperature compensation approach to improving the long-term stability of such MEMS-referenced oscillators. This approach is implemented on a ~26.80 kHz self-sustained MEMS oscillator that integrates the fundamental in-plane mode resonance of a single-crystal silicon-on-insulator (SOI) resonator with a programmable and reconfigurable single-chip CMOS sustaining amplifier. Temperature compensation using a linear equation fit and look-up table (LUT) is used to obtain the near-zero closed-loop temperature coefficient of frequency (TCf) at around room temperature (~25 °C). When subject to small temperature fluctuations in an indoor environment, the temperature-compensated oscillator shows a >2-fold improvement in Allan deviation over the uncompensated counterpart on relatively long time scales (averaging time τ > 10,000 s), as well as overall enhanced stability throughout the averaging time range from τ = 1 to 20,000 s. The proposed temperature compensation algorithm has low computational complexity and memory requirement, making it suitable for implementation on energy-constrained platforms such as Internet of Things (IoT) sensor nodes.


1991 ◽  
Vol 235 ◽  
Author(s):  
S. Yang ◽  
C. Park ◽  
K. Klein ◽  
P. Gupta ◽  
A. Tasch ◽  
...  

ABSTRACTWe have performed a comprehensive experimental study of profiles of arsenic implanted into (100) silicon for a wide range of energies, doses, tilt angles, and rotation angles. Critical angles for channeling of arsenic ions in single-crystal silicon have been calculated and are found to agree well with experimental results. The <100> axial channels and the {110} planar channels are found to be primary sources of channeling. The optimal tilt and rotation angles which minimize channeling and maximize uniformity across a wafer are deduced.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. J. Morris ◽  
B. Obradovic ◽  
S. -H. Yang ◽  
A. F. Tasch ◽  
L. Rubin

AbstractAn electronic stopping power model for boron, arsenic, and phosphorus ion implantation into single-crystal Si is reported over the energy range fr'om a few keV to several MeV, for both offand on-axis implant angles relative to the <100> crystallographic direction. Combined with previously developed models for damage accumulation, this model allows physically-based simulation of 3-D profiles over an extremely wide range of implant conditions. In particular, this allows modeling of MeV implants which are being used more and more frequently.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document