Dynamic simulation of the temperature field of stainless steel laser welding

2007 ◽  
Vol 28 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Han GuoMing ◽  
Zhao Jian ◽  
Li JianQang
2022 ◽  
Vol 145 ◽  
pp. 107493
Author(s):  
Shenghong Yan ◽  
Zheng Meng ◽  
Bo Chen ◽  
Caiwang Tan ◽  
Xiaoguo Song ◽  
...  

2010 ◽  
Vol 154-155 ◽  
pp. 457-460
Author(s):  
Li Jun Liu ◽  
Tie Nan Di ◽  
Rong Hua Zhu

Ferrite stainless steel has been widely used in foreign automobile vent pipe. During the production of domestic automobile vent pipe, because the crystal grains of welding Joint heat-affected zone are not refined by heat treatment and become very big, forming properties of cold machining of ferrite stainless steel become bad. In order to optimize welding technology, the temperature field of laser welding joint of stainless steel automobile vent pipe is simulated. The temperature field model of laser welding joint of 409 L stainless steel pipe is built based on the pair heat source model. At the same time, the affecting factors are considered, such as thermal radiation, phase change latent heat, thermophysical properties of materials with temperature changes and the spread of convective heat in the liquid metal in the model. The temperature field in different welding parameters are simulated. The impact of process parameters on the temperature distribution is acquired. The experimental results can help works, such as accurately understanding laser welding thermal process, predictive control of welding stress and deformation, and improving cold forming quality of automobile vent pipe.


2008 ◽  
Author(s):  
Naoyuki Matsumoto ◽  
Yousuke Kawahito ◽  
Masami Mizutani ◽  
Seiji Katayama

2018 ◽  
Vol 212 ◽  
pp. 54-57 ◽  
Author(s):  
Y. Zhang ◽  
D.Q. Sun ◽  
X.Y. Gu ◽  
Z.Z. Duan ◽  
H.M. Li

Author(s):  
Angshuman Chattopadhyay ◽  
Gopinath Muvvala ◽  
Vikranth Racherla ◽  
Ashish Kumar Nath

Joining of dissimilar metals and alloys has been envisioned since a long time with specific high end applications in various fields. One such combination is austenitic stainless steel grade SS304 and commercial grade titanium, which is very difficult to join under conventional fusion process due to extensive cracking and failure caused by mismatch in structural and thermal properties as well as formation of the extremely brittle and hard intermetallic compounds. One of the methods proposed in literature to control the formation of intermetallics is by fast cooling fusion process like laser beam welding. The present study has been done on laser welding of titanium and stainless steel AISI 304 to understand the interaction of these materials during laser welding at different laser power and welding speed which could yield different cooling rates. Two types of cracks were observed in the weld joint, namely longitudinal cracks and transverse cracks with respect to the weld direction. Longitudinal cracks could be completely eliminated at faster welding speeds, but transverse cracks were found little influenced by the welding speed. The thermal history, i.e. melt pool lifetime and cooling rate of the molten pool during laser welding was monitored and a relation between thermo-cycle with occurrence of cracks was established. It is inferred that the longitudinal cracks are mainly due to the formation of various brittle intermetallic phases of Fe and Ti, which could be minimized by providing relatively less melt pool lifetime at high welding speeds. The reason of the transverse cracks could be the generation of longitudinal stress in weld joint due to the large difference in the thermal expansion coefficient of steel and titanium. In order to mitigate the longitudinal stress laser welding was carried out with a novel experimental arrangement which ensured different cooling rates of these two metals during laser welding. With this the tendency of transverse cracks also could be minimized significantly.


Sign in / Sign up

Export Citation Format

Share Document