Determination of friction coefficient in journal bearings

2007 ◽  
Vol 28 (3) ◽  
pp. 973-977 ◽  
Author(s):  
Bekir Sadık Ünlü ◽  
Enver Atik
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 611
Author(s):  
Yeon-Woong Choe ◽  
Sang-Bo Sim ◽  
Yeon-Moon Choo

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.


1965 ◽  
Vol 32 (4) ◽  
pp. 781-787 ◽  
Author(s):  
R. I. Tanner

The equations describing the flow of simple non-Newtonian oils in short journal bearings are solved approximately for low eccentricity ratios and small viscosity variations with temperature. An approximate method for predicting the temperature distribution is compared with available experiments and appears to give realistic results. It is also shown that the reduction in friction coefficient observed by Dubois, Ocvirk, and Wehe in experiments with non-Newtonian fluids cannot be explained by accounting for through-film viscosity variations.


2019 ◽  
Vol 135 ◽  
pp. 01102
Author(s):  
Dmitriy Savenkov ◽  
Oleg Kirischiev ◽  
Ylia Kirischieva ◽  
Tatiana Tupolskikh ◽  
Tatiana Maltseva ◽  
...  

The article highlights the issues related to the study of physical and mechanical characteristics of bulk materials, namely internal friction coefficients in static and dynamic modes. An innovative device of the carousel type for determining the frictional characteristics of bulk materials is described, which allows to implement the tasks of practical determination of dynamic coefficients of internal friction. Presented the program, methodology and results of research on the practical study of the internal friction coefficient of typical bulk products of agricultural production in the range of linear velocities of displacement of layers from 0 to 2.79 m/s, the reliability of which is not lower than 0.878.


Sign in / Sign up

Export Citation Format

Share Document