The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing

2010 ◽  
Vol 31 (7) ◽  
pp. 3512-3517 ◽  
Author(s):  
S.M. Masoudpanah ◽  
R. Mahmudi
2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


2015 ◽  
Vol 1101 ◽  
pp. 93-98
Author(s):  
Yue Shen ◽  
Chuan Ting Ren ◽  
Guo Quan Zhang ◽  
Ming Xie ◽  
Ming Wen ◽  
...  

The shear deformation behavior of the course-grained Cu-8wt%Ag alloy processed by one pass of equal channel angular pressing (ECAP) was revealed through the metallurgical microscope and the scanning electron microscope. Through the macro-level and micro-level synthesis analysis, it is confirmed that there are two shear deformation during the ECAP processing: the one along the intersection plane (IP) and the other along the vertical plane to the IP. And it is estimated that theoretical ranges of two shear angles are-32°<θ1<0° and 43°<θ2<58° respectively. Finally, it is also proved that the evolution of the shear bands is affected by the parallel and vertical shear to the IP of the ECAP die, and that, besides the shear along the IP, the shear along the vertical plane to the IP also plays an important role during the plastic deformation.


2016 ◽  
Vol 59 ◽  
pp. 356-367 ◽  
Author(s):  
B. Ratna Sunil ◽  
T.S. Sampath Kumar ◽  
Uday Chakkingal ◽  
V. Nandakumar ◽  
Mukesh Doble ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document