Deformation Behavior of Cu-8wt%Ag Alloy during Equal Channel Angular Pressing

2015 ◽  
Vol 1101 ◽  
pp. 93-98
Author(s):  
Yue Shen ◽  
Chuan Ting Ren ◽  
Guo Quan Zhang ◽  
Ming Xie ◽  
Ming Wen ◽  
...  

The shear deformation behavior of the course-grained Cu-8wt%Ag alloy processed by one pass of equal channel angular pressing (ECAP) was revealed through the metallurgical microscope and the scanning electron microscope. Through the macro-level and micro-level synthesis analysis, it is confirmed that there are two shear deformation during the ECAP processing: the one along the intersection plane (IP) and the other along the vertical plane to the IP. And it is estimated that theoretical ranges of two shear angles are-32°<θ1<0° and 43°<θ2<58° respectively. Finally, it is also proved that the evolution of the shear bands is affected by the parallel and vertical shear to the IP of the ECAP die, and that, besides the shear along the IP, the shear along the vertical plane to the IP also plays an important role during the plastic deformation.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2010 ◽  
Vol 667-669 ◽  
pp. 593-598
Author(s):  
Guang Hui Min ◽  
Hong Wei Cui ◽  
Qing Liang Lu ◽  
Pan Gao ◽  
Hua Shun Yu

Equal channel angular pressing (ECAP) has been conducted on as-extruded Mg-Zn-Y alloy containing quasicrystal phase at a temperature of 523 K. The optical images indicate that after 8 ECAP passes through route BA, the grain size of the extruded alloy is decreased sharply; and the coarse eutectic icosahedral quasicrystal phases (I- phases) are broken and dispersed in the alloy; and the distributions of Zn and Y elements become more homogeneous. These can be attributed to the shear effect during the ECAP processing. TEM micrographs show the grain refinement, the evolution of broken and dispersed I- phases and dispersion precipitation of nano I-phases during 1- ,4- and 8- pass ECAPed Mg-Zn-Y alloy. And the mechanism of grain refinement is also discussed.


Sign in / Sign up

Export Citation Format

Share Document