scholarly journals Effect of a two-step solution heat treatment on the microstructure and mechanical properties of 332 aluminium silicon cast alloy

2011 ◽  
Vol 32 (4) ◽  
pp. 2334-2338 ◽  
Author(s):  
M.A. Azmah Hanim ◽  
S. Chang Chung ◽  
O. Khang Chuan
2012 ◽  
Vol 190-191 ◽  
pp. 1306-1310 ◽  
Author(s):  
Ming Bo Yang ◽  
Hong Liang Li ◽  
Ren Ju Cheng ◽  
Hong Jun Hu

In this paper, the effects of Sb addition on heat-treated microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated. The results indicate that the solution heat treatment can modify the Chinese script shaped Mg2Si phase in the AZ61-0.7Si alloy. After solutionized at 420°C, the morphology of the Mg2Si phase in the AZ61-0.7Si alloy changes from the Chinese script shape to the short pole and block shapes, and the higher modification efficiency could be obtained for the alloy with the addition of 0.4 wt.%Sb. In addition, the effect of the solution heat treatment on the morphology of the Mg2Si phase can also result in the improvement of tensile and creep properties for the AZ61-0.7Si alloy. After solutionized at 420°C for 24h and followed by aging treatment at 200°C for 12h, the AZ61-0.7Si alloy exhibits higher tensile and creep properties than that of the as-cast alloy, and the properties improvement resulted from heat treatment, is more obvious for the AZ61-0.7Si alloy with the addition of 0.4 wt.%Sb.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2013 ◽  
Vol 765 ◽  
pp. 511-515 ◽  
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fu Bao Yang ◽  
You Feng He ◽  
Fan Zhang ◽  
...  

The evolution of microstructure and mechanical properties during solution and ageing heat treatment process was studied in terms of a thixo-diecast impeller of 319s aluminium alloy. The cast alloy exhibited a microstructure consisting of primary uniformly distributed in α-Al globules and the eutectics. A series of heat treatment studies were performed to determine optimum heat treatment parameters, in order to achieve fine grain structure, fine silicon particles and optimal precipitate size and distribution. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the evolution of microstructure and mechanical properties. The results demonstrate that, the full T6 heat treatments are successfully applied to thixo-diecast 319s impellers. A two-step solution heat treatment is employed to prevent porosity due to overheating. The tensile properties of thixo-diecast 319s impellers were substantially enhanced after T6 heat treatment. The plate-shaped θ′ precipitates and lath-shaped Q′ precipitates are the most effective for precipitation strengthening.


2015 ◽  
Vol 60 (3) ◽  
pp. 1813-1818
Author(s):  
J. Piątkowski ◽  
T. Matuła

Abstract In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2) of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda) and aging (200ºC/16h/piec) are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together). It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment), causes not only increase in concentration in α(Al) solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.


Sign in / Sign up

Export Citation Format

Share Document