scholarly journals Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites

2012 ◽  
Vol 40 ◽  
pp. 299-303 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
K. Abdan ◽  
E.S. Zainudin
2010 ◽  
Vol 31 (9) ◽  
pp. 4274-4280 ◽  
Author(s):  
I.O. Bakare ◽  
F.E. Okieimen ◽  
C. Pavithran ◽  
H.P.S. Abdul Khalil ◽  
M. Brahmakumar

2014 ◽  
Vol 564 ◽  
pp. 394-399 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
M. Haron

A composite of cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced themoplastic polyurethane (TPU) was prepared by melt-blending method followed by compression moulding. Specimens were cut from the sheets that were prepared by compression moulding. The criteria of optimization was testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters and fiber loading using Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that have been selected. Furthermore ANOVA was used to determine the significance of parameters. The processing parameters chosen for this study were temperature, speed and time of processing and fiber content. The results showed that optimum values were 190°C, 40 rpm, 11min and 30% for processing temperature, processing speed, processing time and fiber content; respectively. Using ANOVA; fiber content showed the highest significance value followed by processing time. Processing temperature and speed showed no significance in the optimization of TPU/CPH.


JOM ◽  
2018 ◽  
Vol 70 (7) ◽  
pp. 1326-1330 ◽  
Author(s):  
A. A. Mohammed ◽  
D. Bachtiar ◽  
M. R. M. Rejab ◽  
X. X. Jiang ◽  
Falak O. Abas ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


Sign in / Sign up

Export Citation Format

Share Document