Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation

2011 ◽  
Vol 46 (10) ◽  
pp. 1714-1722 ◽  
Author(s):  
Li Zhou ◽  
Jie Zhang ◽  
Junhui He ◽  
Yucai Hu ◽  
Hua Tian
Author(s):  
SUNNY SONI ◽  
MADHU AGARWAL

Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


Author(s):  
Hailin Zhao ◽  
Jie Tang ◽  
Zengyuan Li ◽  
Jie Yang ◽  
Hao Liu ◽  
...  

Catalytic oxidation is the most effective method to eliminate the in-door formaldehyde, the Mn-based catalyst with low cost and high activity has drawn great attention. Herein, p-type semiconductor NiO doped...


2018 ◽  
Vol 62 (1-4) ◽  
pp. 198-205 ◽  
Author(s):  
Thomas Schedlbauer ◽  
Patrick Lott ◽  
Maria Casapu ◽  
Heike Störmer ◽  
Olaf Deutschmann ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4534
Author(s):  
Miguel Jose Marin Figueredo ◽  
Clarissa Cocuzza ◽  
Samir Bensaid ◽  
Debora Fino ◽  
Marco Piumetti ◽  
...  

A set of manganese oxide catalysts was synthesized via two preparation techniques: solution combustion synthesis (Mn3O4/Mn2O3-SCS and Mn2O3-SCS) and sol-gel synthesis (Mn2O3-SG550 and Mn2O3-SG650). The physicochemical properties of the catalysts were studied by means of N2-physisorption at −196 °C, X-ray powder diffraction, H2 temperature-programmed reduction (H2-TPR), soot-TPR, X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM). The high catalytic performance of the catalysts was verified in the oxidation of Volatile Organic Compounds (VOC) probe molecules (ethene and propene) and carbon soot in a temperature-programmed oxidation setup. The best catalytic performances in soot abatement were observed for the Mn2O3-SG550 and the Mn3O4/Mn2O3-SCS catalysts. The catalytic activity in VOC total oxidation was effectively correlated to the enhanced low-temperature reducibility of the catalysts and the abundant surface Oα-species. Likewise, low-temperature oxidation of soot in tight contact occurred over the Mn2O3-SG550 catalyst and was attributed to high amounts of surface Oα-species and better surface reducibility. For the soot oxidation in loose contact, the improved catalytic performance of the Mn3O4/Mn2O3-SCS catalyst was attributed to the beneficial effects of both the morphological structure that—like a filter—enhanced the capture of soot particles and to a probable high amount of surface acid-sites, which is characteristic of Mn3O4 catalysts.


2012 ◽  
Vol 468-471 ◽  
pp. 1371-1374
Author(s):  
Ke Nian Wei ◽  
Bin Zhou ◽  
Jiang Quan Ma ◽  
Yan Wang

HPW/C catalysts were prepared using impregnation method. The physical chemistry properties of the catalysts were characterized employing XRD and NH3-TPD.The effects of HPW loading, catalyst amount and reaction time on the catalyst performances were investigated. The results more acid content and active center contribute to the reaction performance. Under the optimal reaction conditions of 0.8g 29%(w) HPW/C as the catalyst, n(adipic acid): n(ethanol):n(toluene)=1:6:1,5h,the etherification rate was 97.3%.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


Sign in / Sign up

Export Citation Format

Share Document