One-pot room temperature novel synthesis of water-soluble CdS nanotriangles via green route

2014 ◽  
Vol 134 ◽  
pp. 225-228 ◽  
Author(s):  
S. Arunkumar ◽  
S. Tamilselvan ◽  
T. Ashokkumar ◽  
R. Geetha ◽  
K. Govindaraju ◽  
...  
2012 ◽  
Vol 531 ◽  
pp. 219-222
Author(s):  
Li Hua Shen ◽  
Ting Shang ◽  
Jun Zhou ◽  
Dong Wang ◽  
Yu Han ◽  
...  

Extremely small-sized superparamagnetic magnetite nanoparticles of 3Cit). The resulting Cit-coated magnetite nanoparticles exhibited long-term colloidal stability in aqueous media without any surface modification. Regarding the magnetic properties, the nanoparticles were superparamagnetic at room temperature, and might be the potential candidate for MRI contrast agents.


RSC Advances ◽  
2015 ◽  
Vol 5 (15) ◽  
pp. 11667-11675 ◽  
Author(s):  
Baozhan Zheng ◽  
Tao Liu ◽  
Man Chin Paau ◽  
Meina Wang ◽  
Yang Liu ◽  
...  

This work reports a simple and energy-saving strategy for selective synthesis of water-soluble and organic-soluble carbon dots at room temperature.


2018 ◽  
Vol 90 (5) ◽  
pp. 845-855 ◽  
Author(s):  
Maxime Dauchy ◽  
Michel Ferreira ◽  
Jérôme Leblond ◽  
Hervé Bricout ◽  
Sébastien Tilloy ◽  
...  

Abstract The synthesis of water-soluble rhodium(I) salicylaldiminato and salicylhydrazonic complexes has been achieved employing two preparative routes. Schiff base condensation between 6A-deoxy-6A-amino-β-CD or 6A-deoxy-6A-hydrazino-β-CD and 5-sodiosulfonato-2-hydroxybenzaldehyde (sulfonated salicylaldehyde) (1) or 5-sodiosulfonato-3-tert-butyl-2-hydroxybenzaldehyde (sulfonated tBu-salicylaldehyde) (2) led to the formation of the corresponding imine or hydrazone ligands (3, 4, 5 and 6). Reaction of [Rh(COD)2+BF4−] with these new ligands in an alkaline solution formed the corresponding rhodium complexes quantitatively. These rhodium(I) complexes could also be prepared in one-pot by mixing, in stoichiometric proportions, the modified β-CDs with the sulfonated salicylaldehyde and with the rhodium precursor in an alkaline solution at room temperature. These rhodium complexes were applied as catalysts in the aqueous biphasic hydroformylation of 1-decene as a model reaction.


2020 ◽  
Author(s):  
Katsuya Maruyama ◽  
Takashi Ishiyama ◽  
Yohei Seki ◽  
Kounosuke Oisaki ◽  
Motomu Kanai

A novel Tyr-selective protein bioconjugation using the water-soluble persistent iminoxyl radical is described. The conjugation proceeded with high Tyr-selectivity and short reaction time under biocompatible conditions (room temperature in buffered media under air). The stability of the conjugates was tunable depending on the steric hindrance of iminoxyl. The presence of sodium ascorbate and/or light irradiation promoted traceless deconjugation, restoring the native Tyr structure. The method is applied to the synthesis of a protein-dye conjugate and further derivatization to azobenzene-modified peptides.


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2010 ◽  
Vol 31 (10) ◽  
pp. 1277-1280
Author(s):  
Chun LIU ◽  
Qijian NI ◽  
Pingping HU ◽  
Hao YUAN ◽  
Zilin JIN

Sign in / Sign up

Export Citation Format

Share Document