The novel synthesis of highly water-soluble few-layer graphene nanosheets by a simple one-pot chemical route and without any modification

2016 ◽  
Vol 183 ◽  
pp. 297-305 ◽  
Author(s):  
Azadeh Tadjarodi ◽  
Somayeh Moazen Ferdowsi
2021 ◽  
Vol 58 (3) ◽  
pp. 210-216
Author(s):  
Balakrishnan Somasekaran ◽  
Alwarsamy Thirunarayanaswamy ◽  
Ilamathi Palanivel

Graphene, a two-dimensional crystalline allotrope of carbon, has received greater attention from numerous researchers due to its excellent properties. Graphene could be produced by various techniques, each method has its advantages and disadvantages. In this research article, a novel method using agricultural waste rice husk as a precursor and chemical activation to produce few-layer graphene nanosheets was developed. Traditional approaches significant shortcomings and the environmental concern of agricultural waste have been eliminated. The synthesized material was characterized using FESEM, Raman Spectroscopy, X-Ray diffractometer, UV-Vis absorbance and FTIR analysis. FESEM analysis of the surface morphology revealed smooth edge few-layer graphene. The formation of sp2 hybridized atoms can be seen in XRD spectra at 26.3 degrees. The C=C stretching bonds detected at 1612 cm-1 wavelength are responsible for the graphitic structure.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5479
Author(s):  
Abdallah Mahmoud ◽  
Piotr Smoleński ◽  
M. Guedes da Silva ◽  
Armando Pombeiro

The 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) derivatives, viz. the already reported 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide (DAPTA=O, 1), the novel 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide (DAPTA=S, 2), and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se, 3), have been synthesized under mild conditions. They are soluble in water and most common organic solvents and have been characterized using 1H and 31P NMR spectroscopy and, for 2 and 3, also by single crystal X-ray diffraction. The effect of O, S, or Se at the phosphorus atom on the structural features of the compounds has been investigated, also through the analyses of Hirshfeld surfaces. The presence of 1–3 enhances the activity of copper for the catalytic azide-alkyne cycloaddition reaction in an aqueous medium. The combination of cheaply available copper (II) acetate and compound 1 has been used as a catalyst for the one-pot and 1,4-regioselective procedure to obtain 1,2,3-triazoles with high yields and according to ‘click rules’.


2014 ◽  
Vol 134 ◽  
pp. 225-228 ◽  
Author(s):  
S. Arunkumar ◽  
S. Tamilselvan ◽  
T. Ashokkumar ◽  
R. Geetha ◽  
K. Govindaraju ◽  
...  

2015 ◽  
Vol 3 (14) ◽  
pp. 7591-7599 ◽  
Author(s):  
Guoxing Zhu ◽  
Chunyan Xi ◽  
Yuanjun Liu ◽  
Jun Zhu ◽  
Xiaoping Shen

A CN–RGO composite with excellent capacitive performance was prepared through a facile and rapid two-step strategy.


2020 ◽  
Vol 21 (11) ◽  
pp. 3741
Author(s):  
Ilaria Sorrentino ◽  
Ilaria Stanzione ◽  
Yannig Nedellec ◽  
Alessandra Piscitelli ◽  
Paola Giardina ◽  
...  

A chimeric enzyme based on the genetic fusion of a laccase with a hydrophobin domain was employed to functionalize few-layer graphene, previously exfoliated from graphite in the presence of the hydrophobin. The as-produced, biofunctionalized few-layer graphene was characterized by electrochemistry and Raman spectroscopy, and finally employed in the biosensing of phenols such as catechol and dopamine. This strategy paves the way for the functionalization of nanomaterials by hydrophobin domains of chimeric enzymes and their use in a variety of electrochemical applications.


2020 ◽  
Vol 978 ◽  
pp. 399-406
Author(s):  
Azmeera Srinivasanaik ◽  
Amlan Das ◽  
Archana Mallik

Graphene, the most unique member of carbon family has fuelled a huge interest across the globe with its superior mechanical, chemical, optical and electronic properties. It has opened enormous avenues for humankind in terms of different applications. Since its discovery in 2004, people have tried various techniques to extract graphene, such as mechanical exfoliation, chemical exfoliation, epitaxial growth, CVD (chemical vapour deposition) etc. However, the above methods are not optimal for mass production, neither are they simple and cost effective. The present work highlights synthesis of graphene through electrochemical approach and its subsequent characterization. Pyrolytic graphite is subjected to intercalation of two different concentrations of HNO3 electrolyte. XRD, FESEM and TEM were utilised to understand the structure and morphology of the obtained few-layer graphene nanosheets (FLGNs). Scanning probe spectroscopy is a useful technique for understanding the morphological structure of a sample at atomic level. Authors have utilised AFM which shows the thickness of the FLGNs to be in the range of 5-6 nm. STM studies of graphene nanosheets revealed atomic scaled periodicity and atomic flatness.


Sign in / Sign up

Export Citation Format

Share Document