Kinetics of the α-α′ phase separation in a 14%Cr oxide dispersion steel at intermediate temperatures

2020 ◽  
pp. 129088
Author(s):  
Yael Templeman ◽  
Malki Pinkas ◽  
Eli Brosh ◽  
Einat Strumza ◽  
Shmuel Hayun ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 294 ◽  
Author(s):  
Lihui Zhu ◽  
Yongsheng Li ◽  
Shujing Shi ◽  
Zhengwei Yan ◽  
Jing Chen ◽  
...  

Uniaxial strain was applied to aging Fe–Cr alloys to study the morphological orientation and kinetics of the nanoscale α′ phase by utilizing phase-field simulation. The effects of applied uniaxial compressive and tensile strain on the two and three-dimensional morphology as well as on the separation kinetics of the α′ phase are quantitatively clarified. Compared with the applied uniaxial tensile strain, the applied uniaxial compressive strain shows a greater effect on the rate of phase separation, lath shape morphology and an increased rate of growth and coarsening in the α′ phase, the boundary of the α + α′ phase region is widened influenced by the applied compressive strain, while the applied tensile strain results in an increase of particle number density and a decrease of particle radius. The peak value of particle size distribution of the α′ phase increases with aging time, while an opposite trend is shown under the applied strain, and there is an obvious deviation from the theoretical distribution of Lifshitz–Slyozov–Wagner under compressive strain. The orientation morphology and kinetic change show the substantial effects of applied strain on the phase separation and supplies the method for the morphological control of nanoscale particles.


2016 ◽  
Vol 110 ◽  
pp. 53-56 ◽  
Author(s):  
C. Capdevila ◽  
M.M. Aranda ◽  
R. Rementeria ◽  
R. Domínguez-Reyes ◽  
E. Urones-Garrote ◽  
...  

2014 ◽  
Vol 53 ◽  
pp. 1037-1046 ◽  
Author(s):  
J. Chao ◽  
C. Capdevila ◽  
M. Serrano ◽  
A. Garcia-Junceda ◽  
J.A. Jimenez ◽  
...  

Author(s):  
N. V. Larcher ◽  
I. G. Solorzano

It is currently well established that, for an Al-Ag alloy quenched from the α phase and aged within the metastable solvus, the aging sequence is: supersaturated α → GP zones → γ’ → γ (Ag2Al). While GP zones and plate-shaped γ’ are metastable phases, continuously distributed in the matrix, formation of the equilibrium phase γ takes place at grain boundaries by discontinuous precipitation (DP). The crystal structure of both γ’ and γ is hep with the following orientation relationship with respect to the fee α matrix: {0001}γ′,γ // {111}α, <1120>γ′,γ, // <110>α.The mechanisms and kinetics of continuous matrix precipitation (CMP) in dilute Al-Ag alloys have been studied in considerable detail. The quantitative description of DP kinetics, however, has received less attention. The present contribution reports the microstructural evolution resulting from aging an Al-Ag alloy with Ag content higher than those previously reported in the literature, focusing the observations of γ' plate-shaped metastable precipitates.


1995 ◽  
Vol 398 ◽  
Author(s):  
Joshua W. Kriesel ◽  
Susanne M. Lee

ABSTRACTUsing rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), we manufactured bulk (4000 nm) films of crystalline Ge0.83Sn0.17. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x ≤ 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. We examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge0.83Sn0.17 polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, we propose phase transformation mechanisms corresponding to crystallization of amorphous Ge0.83Sn0.17, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge1-xSnx crystals. We were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. Our models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20–100°C lower than the bulk melting temperature of Sn. This depressed temperature endotherm we speculate represents liquefaction of nanometer-sized (β–Sn clusters.


2021 ◽  
Vol 120 (7) ◽  
pp. 1219-1230 ◽  
Author(s):  
Jerelle A. Joseph ◽  
Jorge R. Espinosa ◽  
Ignacio Sanchez-Burgos ◽  
Adiran Garaizar ◽  
Daan Frenkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document