Direct laser deposition of Cu-Mo functionally graded layers for dissimilar joining titanium alloys and steels

2021 ◽  
pp. 131042
Author(s):  
M.O. Gushchina ◽  
O.G. Klimova-Korsmik ◽  
P.A. Khorkov ◽  
G.A. Turichin
2017 ◽  
Vol 265 ◽  
pp. 535-541 ◽  
Author(s):  
M.O. Sklyar ◽  
Olga G. Klimova-Korsmik ◽  
V.V. Cheverikin

In this article, perspective using of the laser deposition method for manufacture details from the titanium alloy VT20 is considered. Dependence on a structure of the fractional composition is shown. Study of the structure and properties of parts, which were produced by DLD technology using different modes and under different conditions.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012018
Author(s):  
S A Shalnova ◽  
O G Klimova-Korsmik ◽  
A V Arkhipov ◽  
F A Yunusov

Abstract Advanced techniques of obtaining products require careful selection of materials for various industries. Titanium alloys are widely used in the aerospace, shipbuilding and mechanical engineering industries. The development of near-a titanium alloys should be considered a significant achievement in the field of metallurgy and heat treatment (HT) of titanium alloys. This article presents a study carried out with the aim of optimizing heat treatment modes for high-temperature titanium alloys obtained by direct laser deposition (DLD). Heat treatment was carried out in the temperature range (700-1000°C), covering three typical temperature ranges, i.e. the temperature range for the partial decomposition of martensite, the temperature range for the complete decomposition of martensite, and the phase transformation temperature were subsequently selected as the heat treatment temperatures. Based on metallographic analysis, the influence of heat treatment modes on the structure, as well as the tensile properties at room temperature, of TA15 titanium DLD-samples.


Metallurgist ◽  
2017 ◽  
Vol 61 (5-6) ◽  
pp. 424-428
Author(s):  
D. O. Ivanov ◽  
A. Ya. Travyanov ◽  
P. V. Petrovskii ◽  
I. A. Logachev ◽  
V. V. Cheverikin

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5595
Author(s):  
André Alves Ferreira ◽  
Omid Emadinia ◽  
João Manuel Cruz ◽  
Ana Rosanete Reis ◽  
Manuel Fernando Vieira

Functionally graded material (FGM) based on Inconel 625 and AISI 431 stainless steel powders was produced by applying the direct laser deposition (DLD) process. The FGM starts with layers of Inconel 625 and ends with layers of 431 stainless steel having three intermediate zones with the composition (100-X)% Inconel 625-X% 431 stainless steel, X = 25, 50, and 75, in that order. This FGM was deposited on a 42CrMo4 steel substrate, with and without preheating. Microstructures of these FGMs were evaluated, while considering the distribution of chemical composition and grain structure. Microstructures mainly consisted of columnar grains independent of preheating condition; epitaxial growth was observed. The application of a non-preheated substrate caused the formation of planar grains in the vicinity of the substrate. In addition, hardness maps were produced. The hardness distribution across these FGMs confirmed a smooth transition between deposited layers; however, the heat-affected zone was greatly influenced by the preheating condition. This study suggests that an optimum Inconel 625/AISI 431 FGM obtained by DLD should not exceed 50% AISI 431 stainless steel.


Vacuum ◽  
2019 ◽  
Vol 161 ◽  
pp. 225-231 ◽  
Author(s):  
Qiang Wang ◽  
Song Zhang ◽  
Chunhua Zhang ◽  
Jianqiang Wang ◽  
M. Babar Shahzad ◽  
...  

Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


Sign in / Sign up

Export Citation Format

Share Document