scholarly journals Structure and properties of near-a titanium products obtained by direct laser deposition and heat treatment

2021 ◽  
Vol 2077 (1) ◽  
pp. 012018
Author(s):  
S A Shalnova ◽  
O G Klimova-Korsmik ◽  
A V Arkhipov ◽  
F A Yunusov

Abstract Advanced techniques of obtaining products require careful selection of materials for various industries. Titanium alloys are widely used in the aerospace, shipbuilding and mechanical engineering industries. The development of near-a titanium alloys should be considered a significant achievement in the field of metallurgy and heat treatment (HT) of titanium alloys. This article presents a study carried out with the aim of optimizing heat treatment modes for high-temperature titanium alloys obtained by direct laser deposition (DLD). Heat treatment was carried out in the temperature range (700-1000°C), covering three typical temperature ranges, i.e. the temperature range for the partial decomposition of martensite, the temperature range for the complete decomposition of martensite, and the phase transformation temperature were subsequently selected as the heat treatment temperatures. Based on metallographic analysis, the influence of heat treatment modes on the structure, as well as the tensile properties at room temperature, of TA15 titanium DLD-samples.

2017 ◽  
Vol 265 ◽  
pp. 535-541 ◽  
Author(s):  
M.O. Sklyar ◽  
Olga G. Klimova-Korsmik ◽  
V.V. Cheverikin

In this article, perspective using of the laser deposition method for manufacture details from the titanium alloy VT20 is considered. Dependence on a structure of the fractional composition is shown. Study of the structure and properties of parts, which were produced by DLD technology using different modes and under different conditions.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 10064-10071
Author(s):  
Chen Zhou ◽  
Ding Jin ◽  
Qiaoxin Zhang ◽  
Jingui Yu

Adverse effects of post-heat treatment on interfacial bonding strength of DLD composites probed by fractography and metallographic analysis.


2021 ◽  
Vol 1016 ◽  
pp. 725-731
Author(s):  
Olga Gennadyevna Klimova-Korsmik ◽  
R.V. Mendagaliyev ◽  
I.A. Tsibulskiy ◽  
O.G. Zotov ◽  
R.S. Korsmik ◽  
...  

At present, to increase competitiveness of shipyards for manufacturing of shipbuilding parts new high technologies are used. Additive production methods, including direct laser deposition (DLD) technology, which meets all the requirements of competitiveness, are increasingly being applied. Heavy-duty large-size parts such as propellers, blades, hubs and other critical parts used in shipbuilding have become possible to produce with DLD. In the process of DLD it is possible to produce parts, including shipbuilding steels used in the Arctic conditions, with the required mechanical characteristics not inferior to similar brands of materials obtained by casting or plastic deformation methods. The work is devoted to research of thermal process influence on structure and mechanical properties formation of deposited samples from steel powder 06Cr15Ni4CuMo. Features of formation of microstructure components by means of optical microscopy, X-ray structure analysis (XRD) are investigated, and also CCT diagram is constructed. Tensile and impact toughness tests have been conducted. As a result, it was found that the material obtained by the DLD method in its initial state significantly exceeds the strength characteristics of heat-treated castings of similar chemical composition, but is inferior to it in terms of plasticity and viscosity. The increase of viscosity and plasticity up to the level of cast material in the grown samples is achieved during the subsequent heat treatment, which leads to the formation of the structure of tempered martensite and reduction of its content in the two-stage tempering in the metal structure. The strength of the material is also reduced to cast metal after heat treatment.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1305
Author(s):  
Olga Klimova-Korsmik ◽  
Gleb Turichin ◽  
Ruslan Mendagaliyev ◽  
Sergey Razorenov ◽  
Gennady Garkushin ◽  
...  

In this work, the critical fracture stresses during spalling of high-strength steel 09CrNi2MoCu samples obtained by direct laser deposition (DLD) were measured under shock compression of up to ~5.5 GPa. The microstructure and mechanical properties of DLD steel samples in the initial state and after heat treatment were studied and compared to traditional hot rolled one. The microstructural features of steel before and after heat treatment were revealed. The heat treatment modes of the deposit specimens on their strength properties under both static and dynamic loads have been investigated. The spall strength of the deposited specimens is somewhat lower than the strength of steel specimens after hot rolling regardless of their heat treatment. The minimum elastic limit of elasticity is exhibited by the deposit specimens. After heat treatment of the deposit samples, the elastic limit increases and approximately doubles. Subsequent heat treatment in the form of hardening and tempering allows obtaining strength properties under Hugoniot loads in traditional hot-rolled products.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2738 ◽  
Author(s):  
Ruslan Mendagaliev ◽  
Olga Klimova-Korsmik ◽  
Vladimir Promakhov ◽  
Nikita Schulz ◽  
Alexander Zhukov ◽  
...  

The urgency of heat treatment of samples of maraging steel obtained by direct laser deposition from steel powder 06Cr15Ni4CuMo is considered. The structural features and properties of 06Cr15Ni4CuMo steel samples after direct laser deposition and heat treatment are studied. The work is devoted to research into the influence of thermal processing on the formation of structure and the mechanical properties of deposit samples. Features of formation of microstructural components by means of optical microscopy are investigated. Tests for tension and impact toughness are conducted. As a result, it was established that the material obtained by the direct laser deposition method in its initial state significantly exceeds the strength characteristics of heat treatment castings of similar chemical composition, but is inferior to it in terms of impact toughness and relative elongation. The increase in relative elongation and impact toughness up to the level of cast material in the deposit samples is achieved at the subsequent heat treatment, which leads to the formation of the structure of tempered martensite and reduction in its content at two-stage tempering in the structure of the metal. The strength of the material is also reduced to the level of cast metal.


2016 ◽  
Vol 684 ◽  
pp. 461-467 ◽  
Author(s):  
Vladimir Glukhov ◽  
Gleb Turichin ◽  
Olga G. Klimova-Korsmik ◽  
Evgeniy Zemlyakov ◽  
Konstantin Babkin

In this article the technology “high-speed direct laser deposition” is performed. Influence of process parameters on product properties and material structure was defined for Ni-based alloy Inconel 625. Developed technology provided the mechanic properties of products on the bottom level of rolled metal and allows avoid heat treatment and HIP in production process. Economic efficiency of this technology is demonstrated for main areas of industry.


Sign in / Sign up

Export Citation Format

Share Document