Surface Nano-crystallizationof AISI 304 Stainless Steel through Shot Peening Technique

2015 ◽  
Vol 2 (4-5) ◽  
pp. 3245-3250 ◽  
Author(s):  
Prashant Tadge ◽  
Prince Kumar Gupta ◽  
C. Sasikumar
Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1408
Author(s):  
Yu-Hsuan Chung ◽  
Tai-Cheng Chen ◽  
Hung-Bin Lee ◽  
Leu-Wen Tsay

The effects of micro-shot peening on the rotating bending fatigue resistance of AISI 304 stainless steel (SS) were investigated in this study. The strain-hardening, surface roughness and induced residual stress were inspected and correlated with fatigue strength. Micro-shot peening caused intense strain-hardening, phase transformation and residual stress but was also accompanied by a minor increase in surface roughness. A nanograined structure, which was advantageous to fatigue resistance, was observed in the severe shot-peened layer. The absence of microcracks, minor increase in surface roughness, nanograined structure and induced high compressive residual stress in the shot-peened layer were responsible for the improved fatigue strength of AISI 304 SS.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document