Experimental Investigations to Study the Cutting Force and Surface Roughness during Turning of Aluminium Metal Matrix Hybrid Composites

2017 ◽  
Vol 4 (9) ◽  
pp. 9371-9374 ◽  
Author(s):  
NG Siddesh Kumar ◽  
GS Shiva Shankar ◽  
MN Ganesh ◽  
LK Vibudha
2011 ◽  
Vol 418-420 ◽  
pp. 1307-1311
Author(s):  
Jun Hu ◽  
Yong Jie Bao ◽  
Hang Gao ◽  
Ke Xin Wang

The experiments were carried out in the paper to investigate the effect of adding hydrogen in titanium alloy TC4 on its machinability. The hydrogen contents selected were 0, 0.25%, 0.49%, 0.63%, 0.89% and 1.32%, respectively. Experiments with varing hydrogen contents and cutting conditions concurrently. Experimental results showed that the cutting force of the titanium alloy can be obviously reduced and the surface roughness can be improved by adding appropriate hydrogen in the material. In the given cutting condition, the titanium alloy TC4 with 0.49% hydrogen content showed better machinability.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Deep Verma ◽  
P. Chandrasekhar ◽  
S. Singh ◽  
S. Kar

The deformation characteristics during open-die forging of silicon carbide particulate reinforced aluminium metal matrix composites (SiCp AMC) at cold conditions are investigated. The material was fabricated by liquid stir casting method in which preheated SiC particles were mixed with molten LM6 aluminium casting alloy and casted in the silicon mould. Finally, preforms obtained were machined in required dimensions. Two separate cases of deformation, that is, open-die forging of solid disc and solid rectangular preforms, were considered. Both upper bound theoretical analysis and experimental investigations were performed followed by finite element simulation using DEFORM, considering composite interfacial friction law, barreling of preform vertical sides, and inertia effects, that is, effect of die velocity on various deformation characteristics like effective stress, strain, strain rate, forging load, energy dissipations, and height reduction. Results have been presented graphically and critically investigated to evaluate the concurrence among theoretical, experimental, and finite element based computational findings.


Author(s):  
Satyanarayana Kosaraju ◽  
Venu Gopal Anne ◽  
Swapnil Gosavi

Composite materials are important engineering materials due to their outstanding mechanical properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The high cost and difficulty of processing these composites restricted their application and led to the development of reinforced composites. In the last two decades, wear studies on Particulate Metal Matrix Composites (PMMCs) reinforced with various reinforcements ranging from very soft materials like graphite, talc etc., to high hardened ceramic particulates like SiCp, Al2O3 etc., have been reported to be superior to their respective unreinforced alloys. Therefore, present work focused on the study of machinability of Al based binary composites reinforced with 8.5% SiC and Al based Hybrid composite reinforced with 8.5% SiC, 2% and 4% Graphite powder (Solid lubricant) have been studied by considering the effect of process parameters such as speed, feed, depth of cut and composition of material. Binary and hybrid composite materials have been casted by stir casting methodology. Experiments have been conducted using Design of Experiments approach to reduce the number of experiments and time. The cutting force and surface roughness in turning of both the binary and hybrid materials have been measured using cutting force dynamometer (4 component kistler dynamometer) and the roughness has been measured using surface roughness tester (Marsurf M400) simultaneously. The multi objective optimization has been carried out using Grey relational based Taguchi method. It was observed that feed was the most influencing factor compared to others factors and also results shown that the performance characteristics cutting force and the surface roughness are greatly enhanced by using Grey relational Analysis.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


Sign in / Sign up

Export Citation Format

Share Document