Experimental Investigations of the Machinability of Titanium Alloy TC4 with Different Hydrogen Contents

2011 ◽  
Vol 418-420 ◽  
pp. 1307-1311
Author(s):  
Jun Hu ◽  
Yong Jie Bao ◽  
Hang Gao ◽  
Ke Xin Wang

The experiments were carried out in the paper to investigate the effect of adding hydrogen in titanium alloy TC4 on its machinability. The hydrogen contents selected were 0, 0.25%, 0.49%, 0.63%, 0.89% and 1.32%, respectively. Experiments with varing hydrogen contents and cutting conditions concurrently. Experimental results showed that the cutting force of the titanium alloy can be obviously reduced and the surface roughness can be improved by adding appropriate hydrogen in the material. In the given cutting condition, the titanium alloy TC4 with 0.49% hydrogen content showed better machinability.

2013 ◽  
Vol 690-693 ◽  
pp. 2540-2549 ◽  
Author(s):  
Somkiat Tangjitsitcharoen

This paper presents the surface roughness model which is proposed and developed to predict the surface roughness in the CNC turning of the carbon steel with the coated carbide tool under various cutting conditions by using the response surface analysis with the Box-Behnken design based on the experimental results. The in-process monitoring of the cutting force and the cutting temperature is utilized to analyze the relation between the surface roughness and the cutting condition. The tool dynamometer and the infrared pyrometer are employed and installed on the turret of CNC turning machine to measure the in-process cutting force and cutting temperature. The models of cutting force ratio and cutting temperature are also developed based on the experimental data. The optimum cutting condition is determined referring to the minimum surface roughness of the surface plot, which is obtained from the developed surface roughness model. The experimental results show that the higher cutting speed gives the better surface roughness due to the higher cutting temperature, however the tool life becomes shorter. The feed rate is the most significant factor which affects the surface roughness, while a small depth of cut helps to improve the surface roughness. The effectiveness of the surface roughness prediction model has been proved by utilizing an analysis of variance (ANOVA) at 95% confident level. Hence, the surface roughness can be predicted and obtained easily referring to the developed surface roughness model.


2013 ◽  
Vol 315 ◽  
pp. 562-566
Author(s):  
Kosaraju Satyanarayana ◽  
Anne Venu Gopal ◽  
Popuri Bangaru Babu

The problem of machining titanium is one of ever-increasing magnitude due to its low thermal conductivity and work hardening characteristic of the titanium alloy. The efficient machining of titanium alloy with coated carbides involves a proper selection of process parameters to minimizing the surface roughness and cutting force. In the present work, experimental studies have been carried out to obtain the optimum conditions for machining titanium alloy. The effect of machining parameters such speed, feed and depth of cut on the cutting force, surface roughness were investigated. The significance of these parameters, on cutting force and surface roughness has been established using the analysis of variance. Mathematical models have also been developed for estimating the cutting force and surface roughness on the basis of experimental results.


Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
A. H. M. Esfakur Rahman

The study presented involves the identification of surface roughness in Aluminum work pieces in an end milling process using fuzzy clustering of vibration signals. Vibration signals are experimentally acquired using an accelerometer for varying cutting conditions such as spindle speed, feed rate and depth of cut. Features are then extracted by processing the acquired signals in both the time and frequency domain. Techniques based on statistical parameters, Fast Fourier Transforms (FFT) and the Continuous Wavelet Transforms (CWT) are utilized for feature extraction. The surface roughness of the machined surface is also measured. In this study, fuzzy clustering is used to partition the feature sets, followed by a correlation with the experimentally obtained surface roughness measurements. The fuzzifier and the number of clusters are varied and it is found that the partitions produced by fuzzy clustering in the vibration signal feature space are related to the partitions based on cutting conditions with surface roughness as the output parameter. The results based on limited simulations are encouraging and work is underway to develop a larger framework for online cutting condition monitoring system for end milling.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2009 ◽  
Vol 407-408 ◽  
pp. 335-338 ◽  
Author(s):  
Jin Sheng Wang ◽  
Da Jian Zhao ◽  
Ya Dong Gong

A micromilling experimental study on AISI 4340 steel is conducted to understand the micromilling principle deeply. The experimental results, especially on the surface roughness and cutting force, are discussed in detail. It has been found the minimum chip thickness influences the surface roughness and cutting force greatly. Meanwhile, the material elastic recover induces the increase of the axial micromilling force. The average cutting force and its spectrum analysis validate the minimum chip thickness approximation of AISI 4340 is about 0.35μm.


2020 ◽  
Vol 14 (1) ◽  
pp. 18-25
Author(s):  
Haruhiko Suwa ◽  
Soushi Sakamoto ◽  
Masafumi Nagata ◽  
Kazuhiro Tezuka ◽  
Tetsuo Samukawa ◽  
...  

Sintered tungsten carbide which has high hardness and high heat resistance, has been widely used in molds and dies. Research on the development of a cutting technology for sintered tungsten carbide (sintered WC-Co alloy) has been pursued mainly with the use of a turning process. We focused on building an efficient milling method for sintered tungsten carbide by using diamond-coated ball end tools, and have investigated their basic properties under specific cutting conditions. This study extends our previous work by enhancing cutting distance in the milling of sintered tungsten carbide, especially that with a “fine” WC grain. The surface roughness of cut workpieces is evaluated from the point of view of the quality of surface roughness. A series of cutting experiments under different cutting conditions were carried out, and the possibility of deriving a suitable cutting condition for the ball end milling of sintered tungsten carbide is discussed.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2006 ◽  
Vol 505-507 ◽  
pp. 1009-1014
Author(s):  
C.L. Wu ◽  
K.S. Wang

An Intelligent Tool Post (ITP) used in lathe is proposed in this study. ITP is designed from the basis of two different cutting force characteristics produced from abnormal cutting generated by tool crashing workpiece and from normal cutting. ITP is capable of sensing and distinguishing the normal cutting signals from the abnormal ones. During normal cutting, ITP is able to resist the cutting torque and continue the cutting. As abnormal cutting occurs, the tool would move away from the workpiece without any damage. The equations for design and operation have been established. With the threshold and the design equation, one can design appropriate ITP. The threshold can be calculated and set up by the operating equation and the cutting conditions. Furthermore, Taguchi method was employed to conduct the experiments and analyze the experimental results. The results showed that the ITP’s functions met the design requirements completely.


HBRC Journal ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 263-269 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
M.N.M. Ansari ◽  
Bashir Mohamed

Sign in / Sign up

Export Citation Format

Share Document