Comparative study of phase transformation of Al2O3 nanoparticles prepared by chemical precipitation and sol-gel auto combustion methods

2020 ◽  
Vol 26 ◽  
pp. 122-125
Author(s):  
Priyanka Nayar ◽  
Sayali Waghmare ◽  
Priyansh Singh ◽  
Mohamed Najar ◽  
Suresh Puttewar ◽  
...  
2016 ◽  
Vol 175 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Piyaporn Jaimeewong ◽  
Methee Promsawat ◽  
Anucha Watcharapasorn ◽  
Sukanda Jiansirisomboon

2019 ◽  
Vol 1 (1) ◽  
pp. 403-413 ◽  
Author(s):  
Rameshwar B. Borade ◽  
Sagar E. Shirsath ◽  
Gaurav Vats ◽  
Anil S. Gaikwad ◽  
S. M. Patange ◽  
...  

Nanocrystalline Ce-substituted yttrium iron garnet (YIG) powders of different compositions, Y3−xCexFe5O12 (0 ≤ x ≤ 2.0), were synthesized by a combination of sol–gel auto-combustion and solid-state synthesis techniques.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 272 ◽  
Author(s):  
Yassine Slimani ◽  
Munirah Abdullah Almessiere ◽  
Sadik Güner ◽  
Umran Kurtan ◽  
Abdulhadi Baykal

In this paper, we introduced a comparative study of Sm-Tm-substituted Sr-Ba nanohexaferrites (NHFs), Sr0.5Ba0.5TmxSmxFe12−2xO19 with x = 0.00–0.05, manufactured via both citrate sol-gel auto-combustion and ultrasonication approaches. The phase formation of M-type hexaferrite (HF) for both compositions was confirmed by X-ray diffraction (XRD) powder pattern, Fourier-transform infrared (FT-IR) spectra, scanning and transmission electron microscopy (SEM and TEM) micrographs, energy dispersive X-ray (EDX) spectra, and elemental mappings. The magnetic properties at room temperature (RT) and low temperature (T = 10 K) were also investigated. M-H loops revealed ferrimagnetic nature for various prepared nanohexaferrites via sol-gel and ultrasonication routes. The Ms (saturation magnetization) and Mr (remanence) values increased with increasing Tm-Sm substituting contents. Ms and Mr reached their maximum values at x = 0.04 in the case of samples prepared using the sol-gel technique and at x = 0.03 for those prepared via ultrasonication route. M-H loops were very broad in samples prepared via ultrasonication route in comparison to those produced by means of the sol-gel approach, implying that the products synthesized via ultrasonication route have greater values of coercivity (Hc). The variations in Hc values with respect to Tm-Sm substitutions were governed by the evolutions in the magneto-crystalline anisotropy. Diffuse reflectance spectra (DRS) were employed to estimate the direct band gap of pristine and co-substituted Sr0.5Ba0.5Fe12O19 hexaferrites. Optical energy band gaps (Eg) of pristine samples were significantly tuned by co-substitution of Tm3+ and Sm3+ ions. Eg values of the Sr0.5Ba0.5Fe12O19 sample, which was synthesized using the sol-gel method, decreased almost linearly from 1.75 to 1.45 eV by increasing co-doped ion content. However, we observed a sharp drop from 1.85 eV to an average of 1.50 eV for the samples, which were synthesized using the ultrasonication approach.


Author(s):  
A Sutka ◽  
S Lagzdina ◽  
G Mezinskis ◽  
A Pludons ◽  
I Vitina ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document