Numerical study of CeO2/H2O nanofluid application on thermal performance of heat pipe

2019 ◽  
Vol 18 ◽  
pp. 1006-1016 ◽  
Author(s):  
Naveen Kumar Gupta ◽  
Aman Barua ◽  
Shashwat Mishra ◽  
Shubham Kumar Singh ◽  
Arun Kr Tiwari ◽  
...  
2014 ◽  
Vol 04 (04) ◽  
pp. 118-127 ◽  
Author(s):  
Masahito Nishikawara ◽  
Hosei Nagano ◽  
Laetitia Mottet ◽  
Marc Prat

2018 ◽  
Vol 7 (4.35) ◽  
pp. 204
Author(s):  
M. Zufar ◽  
P. Gunnasegaran ◽  
Ng K. Ching

Pulsating Heat Pipe (PHP) is the next generation heat pipe that has a prospect in improving the heat transfer performance. The type of working fluid use in the PHP has a direct influence on the thermal performance. Incorporating nanofluid in PHP may greatly increase its thermal performance as compared to using base fluid (water). The current work focuses on the simulations of 2-dimensional flows in PHP using working fluids such as diamond, silver (Ag), silica oxide (SiO2) nanofluids and water. Constant heat flux and filling ratio of 50% were used throughout the study. From the results, it was found out that diamond nanofluid has the lowest thermal resistance value as compared to other working fluids. The effect of the number of PHP turns was studied and it was discovered that higher number of turns would produce lower thermal resistance value.


2022 ◽  
Vol 172 ◽  
pp. 107302
Author(s):  
Xiao Sun ◽  
Sizhuo Li ◽  
Bo Wang ◽  
Bo Jiao ◽  
John Pfotenhauer ◽  
...  

2018 ◽  
Vol 49 (17) ◽  
pp. 1721-1744 ◽  
Author(s):  
Adnan Sözen ◽  
Erdem Çiftçi ◽  
Selçuk Keçel ◽  
Metin Gürü ◽  
Halil Ibrahim Variyenli ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document