scholarly journals Numerical Study on the Effects of using Nanofluids in Pulsating Heat Pipe

2018 ◽  
Vol 7 (4.35) ◽  
pp. 204
Author(s):  
M. Zufar ◽  
P. Gunnasegaran ◽  
Ng K. Ching

Pulsating Heat Pipe (PHP) is the next generation heat pipe that has a prospect in improving the heat transfer performance. The type of working fluid use in the PHP has a direct influence on the thermal performance. Incorporating nanofluid in PHP may greatly increase its thermal performance as compared to using base fluid (water). The current work focuses on the simulations of 2-dimensional flows in PHP using working fluids such as diamond, silver (Ag), silica oxide (SiO2) nanofluids and water. Constant heat flux and filling ratio of 50% were used throughout the study. From the results, it was found out that diamond nanofluid has the lowest thermal resistance value as compared to other working fluids. The effect of the number of PHP turns was studied and it was discovered that higher number of turns would produce lower thermal resistance value.

Author(s):  
Pramod R. Pachghare ◽  
Ashish M. Mahalle

The closed loop pulsating heat pipe (CLPHP) is a passive two-phase heat transfer device, patented by Akachi (1990). Due to its excellent features, PHP has been considered as one of the promising technologies for electronic cooling, heat exchanger, etc. This paper presents an experimental study shows the effect of inclination angle on the thermal performance of CLPHP, which consist of 10 turns of copper tubes having inner and outer diameter 2 mm and 3.6 mm respectively. The equal lengths of evaporator, condenser and adiabatic sections are 50 mm each. Different working fluids are used as R-134a, Methanol and Water. For all experimentations, an optimum filling ratio was maintained 50% by volume. The thermal performance have been investigated with different inclination angles (viz. 0°, 20°, 40°, 60° and 90°) at various heat input from 5 to 50W in the steps of 5W. The thermal resistance (which is inversely proportional to thermal performance) of CLPHP at various heat input are plotted for different working fluids. The result shows that, the thermal resistance decreases as heat input increases. But at low heat input i.e. upto 25W, the thermal resistance decreases rapidly and the PHP performance is more sensitive to the inclination angle whereas high heat input i.e. above 25W, the thermal resistance decreases smoothly and less independent to the inclination angle. In all inclination angles, vertical bottom heat position (at 90°) of CLPHP gives best thermal performance due to presence of gravity force. At all inclination angles, the working fluid R-134a show best thermal performance followed by methanol and water.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Mohammad Hassan Saidi ◽  
Hossein Afshin ◽  
Mohammad Behshad Shafii ◽  
...  

In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location leads to a different thermal resistance in the OLPHP charged with ferrofluid.


2014 ◽  
Vol 592-594 ◽  
pp. 1554-1558 ◽  
Author(s):  
N. Narendra Babu ◽  
Rudra Naik

Pulsating heat pipe (PHP) is a passive heat transfer device, which transfers heat from one region to another with exceptional heat transfer capacity. It utilizes the latent heat of vaporization of the working fluid as well as the sensible heat. As a result, the effective thermal conductivity is higher than that of the conductors. An experimental study on three turn closed loop pulsating heat pipe with three different working fluids viz., Acetone, Methanol, Heptane and distilled water were employed. The PHP is made up of brass material with an inner diameter of 1.95mm, with a total length of 1150 mm for different fill ratios (FR) was employed .The PHP is tested for the thermal resistance and the heat transfer coefficient. The experimental result strongly demonstrates that acetone is a better working fluid among the working fluids considered in terms of higher heat transfer coefficient and lower thermal resistance.


Author(s):  
Maziar Mohammadi ◽  
Mohammad Mohammadi ◽  
Amir R. Ghahremani ◽  
M. B. Shafii

In this work, a four-turn Pulsating Heat Pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability of obtaining various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (25%, 40%, and 55%), heat input (25, 35, 45, 55, 65, 75, and 85 W), orientation (vertical and horizontal heat mode), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water based ferrofluid reduced the thermal resistance of PHP by a factor of 40.5% and 38.3% in comparison with the pure water case for the vertical and horizontal mode, respectively. According to the experimental results, an optimum thermal resistance of 0.38 °C/W was achieved at the following conditions: water-based ferrofluid as the working fluid in the presence of magnetic field, vertical mode, charging ratio of 55%, 7% volumetric concentration, and 85 W heat input. This thermal resistance is 11.5 times better than that of the empty PHP.


Author(s):  
Maziar Mohammadi ◽  
Mehdi Taslimifar ◽  
Mohammad Hassan Saidi ◽  
Mohammad Behshad Shafii ◽  
Hossein Afshin ◽  
...  

The present work investigates the thermal performance of a five turn Open Loop Pulsating Heat Pipe (OLPHP). The effects of working fluid namely water and ferrofluid, heat input, ferrofluid concentration, charging ratio, and orientation will be considered. Experimental results show that using ferrofluids can enhance the thermal performance in comparison with the case of distilled water. In addition, applying a magnetic field on the OLPHP charged with ferrofluid reduces its thermal resistance. Variation of the ferrofluid concentration results in different thermal performance of the OLPHP. Best charging ratio for the distilled water and ferrofluid without magnetic field is 60% in most of the cases, while in the case of ferrofluid in the presence of magnetic field at low heat inputs, 20% and at high heat inputs 60% of charging ratios have lowest thermal resistance.


Author(s):  
Mitchell P. Hoesing ◽  
Gregory J. Michna

The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A 20-turn flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water. Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of .49 K/W and .53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal the PHP had a resistance of .76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.


2016 ◽  
Vol 369 ◽  
pp. 42-47 ◽  
Author(s):  
Patrik Nemec ◽  
Zuzana Kolková ◽  
Milan Malcho

Heat pipe is well known device which is used to heat transfer phase-change of working fluid. Pulsating heat pipe (PHP) is special type of heat pipe which heat transfer by pulsating movement of working fluid. Article deals about operating activity and thermal performance measurement of this special heat pipe. Operating activity visualization of PHP was performed with PHP made from glass. The two types of PHPs were made. The first PHP has internal diameter of tube 1 mm, second PHP has internal diameter of tube 1.5 mm and both PHPs have eleven meanders. The working fluids used in PHP were water and Fluorinert FC-72. These fluids were chose for their different thermo-physical properties and the visualization observe formation of liquid and vapour phase working fluid during filling process and working operation.Next, the article describes thermal performance measurement of PHP depending on working fluid amount and heat source temperature. Measurement was performed with PHP made from copper tube with inner diameter 1.5 mm curved to the twenty one meanders and filled with water. The results give us image about formation and distribution of working fluid in pulsating heat pipe and about influence of working fluid amount on the heat transfer ability of pulsating heat pipe.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


2017 ◽  
Vol 865 ◽  
pp. 137-142
Author(s):  
Somchai Maneewan ◽  
Chantana Punlek ◽  
Hoy Yen Chan ◽  
Atthakorn Thongtha

Heat transfer performances of a pulsating heat pipe (PHP) having internal and external diameter with 4.5 mm and 6 mm with various contents of refrigerant are experimentally investigated. The working fluid as R404A refrigerant was filled in the volume ratios from 0% to 80% and the heat input was controlled in the range from 10 W to 80 W. Obtained results exhibited the ability of R404A refrigerant can enhance the thermal performance in steady state condition. The average temperature difference of the evaporating section and condensing section in the 80% filling volume ratio decreased from 9.5 °C to 2.5 °C when the heating power increase from 10 W to 80 W. The thermal resistance of evaporator and condenser decreased with an increase of the heat input as well. For other filling volume ratios, the trend of temperature difference and thermal resistance was similar to that of the 80% volume filling ratio. Considering the same heat input, the highest heat transfer performance was found at the 80% volume filling ratio. Refrigerant with a relatively low dynamic consistency can lead to relatively high velocity in the PHP that can reduce the temperature difference between the evaporating section and condensing section.


Sign in / Sign up

Export Citation Format

Share Document