Experimental study of dust effect on the transmission of a glass PV panel for a fixed and tracking system

2020 ◽  
Vol 27 ◽  
pp. 3091-3094 ◽  
Author(s):  
Alae Azouzoute ◽  
Mohammed Garoum ◽  
Faouaz Jeffali ◽  
El Ghali Bennouna ◽  
Abdellatif Ghennioui
Author(s):  
Hemant Kumar Nayak ◽  
Manoj Kumar ◽  
Nagendra Prasad ◽  
Rashmi Rekha Behera

This paper presents the design and experimental study of a two axis (azimuth and Polar) automatic control solar tracking system to track solar PV panel according to the direction of beam propagation of solar radiation. The designed tracking system consists of sensor and Microcontroller with built in ADC operated control circuits to drive motor. Two steeper motors are used to move the system panel, keeping the sun’s beam at the center of the sensor. The measured variables are compared with the fixed axis. The results indicate that the energy surplus becomes about (45-56%) with atmospheric influences. In case of seasonal changes of the sun’s position there is no need to change in the hardware and software of the system. . Considering all above aspects of this tracking system it can be concluded that, it is a flexible tracking system with low cost electromechanical set-up, low maintenance requirements and ease on installation and operation.


2021 ◽  
Vol 230 ◽  
pp. 111219
Author(s):  
Alae Azouzoute ◽  
Charaf Hajjaj ◽  
Houssain Zitouni ◽  
Massaab El Ydrissi ◽  
Oumaima Mertah ◽  
...  

2015 ◽  
Vol 787 ◽  
pp. 893-898
Author(s):  
Suneetha Racharla ◽  
K. Rajan ◽  
K.R. Senthil Kumar

Recently renewable energy sources have gained much attention as a clean energy. But the main problem occurs with the varying nature with the day and season. Aim of this paper is to conserve the energy, of the natural resources. For solar energy resource, the output induced in the photovoltaic (PV) modules depends on solar radiation and temperature of the solar cells. To maximize the efficiency of the system it is necessary to track the path of sun in order to keep the panel perpendicular to the sun. This paper proposes the design and construction of a microcontroller-based solar panel tracking system. The fuzzy controller aims at maximizing the efficiency of PV panel by focusing the sunlight to incident perpendicularly to the panel. The system consists of a PV panel which can be operated with the help of DC motor, four LED sensors placed in different positions and a fuzzy controller which takes the input from sensors and gives output speed to motor. A prototype is fabricated to test the results and compared with the simulation results. The results show the improved performance by using a tracking system


2016 ◽  
Vol 12 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Ammar Aldair ◽  
Adel Obed ◽  
Ali Halihal

Nowadays, renewable energy is being used increasingly because of the global warming and destruction of the environment. Therefore, the studies are concentrating on gain of maximum power from this energy such as the solar energy. A sun tracker is device which rotates a photovoltaic (PV) panel to the sun to get the maximum power. Disturbances which are originated by passing the clouds are one of great challenges in design of the controller in addition to the losses power due to energy consumption in the motors and lifetime limitation of the sun tracker. In this paper, the neuro-fuzzy controller has been designed and implemented using Field Programmable Gate Array (FPGA) board for dual axis sun tracker based on optical sensors to orient the PV panel by two linear actuators. The experimental results reveal that proposed controller is more robust than fuzzy logic controller and proportional-integral (PI) controller since it has been trained offline using Matlab tool box to overcome those disturbances. The proposed controller can track the sun trajectory effectively, where the experimental results reveal that dual axis sun tracker power can collect 50.6% more daily power than fixed angle panel. Whilst one axis sun tracker power can collect 39.4 % more daily power than fixed angle panel. Hence, dual axis sun tracker can collect 8 % more daily power than one axis sun tracker.


2021 ◽  
Vol 11 (5) ◽  
pp. 7542-7550
Author(s):  
M. R. Rezoug ◽  
M. Benaouadj ◽  
D. Taibi ◽  
R. Chenni

Improvements and applications of Inertial Measurement Unit (IMU) sensors have increased in several areas. They are generally used in equipment that measures orientation, gravitational force, and speed. Therefore, in this paper, we worked on improving the performance of IMU in an application on solar trackers of the Kalman filter. This work illustrates the design of an autonomous device with astronomical control of a photovoltaic (PV) panel, allowing the optimization of the orientation/energy gain ratio. The device is based on two concepts at the same time, the modeling of the solar trajectory adopted by an algorithm which calculates continuously the solar angles (elevation and azimuth) and the approval of these by the IMU in order to sweep away any climatic fluctuations and thus allow an almost perfect adjustment relative to the perpendicular axis of the rays. The tracking system is based on two joints controlled by an Arduino control board. Experiments have shown a better performance of the two-axis device: the net energy gains can be around 34% with an additional 1.1% when the Kalman filter is applied.


Sign in / Sign up

Export Citation Format

Share Document