Analysis of apparent activation energy of shear viscosity of PVC/ZnO nanocomposite, at its phase transition temperature

2020 ◽  
Vol 30 ◽  
pp. 84-87
Author(s):  
Vishal Mathur ◽  
Pramod Kumar Arya ◽  
Manasvi Dixit
2013 ◽  
Vol 45 (3) ◽  
pp. 305-311 ◽  
Author(s):  
V.A. Blagojevic ◽  
N. Obradovic ◽  
N. Cvjeticanin ◽  
D.M. Minic

Hydrothermally synthesized one-dimensional and two-dimensional nanocrystals of VO2 undergo phase transition around 65?C, where temperature and mechanism of phase transition are dependent on dimensionality of nanocrystals. Both nanocrystalline samples exhibit depression of phase transition temperature compared to the bulk material, the magnitude of which depends on the dimensionality of the nanocrystal. One-dimensional nanoribbons exhibit lower phase transition temperature and higher values of apparent activation energy than two-dimensional nanosheets. The phase transition exhibits as a complex process with somewhat lower value of enthalpy than the phase transition in the bulk, probably due to higher proportion of surface atoms in the nanocrystals. High values of apparent activation energy indicate that individual steps of the phase transition involve simultaneous movement of large groups of atoms, as expected for single-domain nanocrystalline materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fuliang Zhu ◽  
Yanshuang Meng

The influence of Eu3+-doped on phase transition kinetics of pseudoboehmite has not been reported in the literature. Through dropping Eu(NO3)3into pseudoboehmite colloidal solution, pseudoboehmite xerogel was produced using spray pyrolysis. The influence of Eu3+-doped on the mechanism of pseudoboehmite phase transition kinetics has been calculated and analyzed by TG/DSC, XRD, and Kissinger equation. Part of Eu3+ion formed compound EuAl12O19, which existed betweenα-Al2O3grains. Bulk diffusion of Al3+was prevented from compound EuAl12O19. Therefore, phase transition kinetics rate ofθ-Al2O3 → α-Al2O3was slowed down, causing an increase of phase transition activation energy and elevation of phase transition temperature.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25664-25676
Author(s):  
Abir Hadded ◽  
Jalel Massoudi ◽  
Sirine Gharbi ◽  
Essebti Dhahri ◽  
A. Tozri ◽  
...  

The present work reports a detailed study of the spin dynamics, magnetocaloric effect and critical behaviour near the magnetic phase transition temperature, of a ferrimagnetic spinel Cu1.5Mn1.5O4.


2017 ◽  
Vol 1 (6) ◽  
Author(s):  
S. Cervera ◽  
M. Trassinelli ◽  
M. Marangolo ◽  
C. Carrétéro ◽  
V. Garcia ◽  
...  

2021 ◽  
Vol 291 ◽  
pp. 129519
Author(s):  
Yuwaraj K. Kshetri ◽  
Bina Chaudhary ◽  
Takashi Kamiyama ◽  
Tae-Ho Kim ◽  
Federico Rosei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document