scholarly journals Feasibility study of the properties of geopolymer concrete with ferrochrome slag and silica fume

Author(s):  
Sanghamitra Jena ◽  
Ramakanta Panigrahi

The investigative studies on mechanical performance & behaviour, of Geopolymer Concrete (GPC) before and after the exposure to elevated temperatures (of 200 0 C -1000 0 C with an increment of 100 0 C). Indicate that the GPC Specimens Exhibited better Compressive strength at higher temperatures than that of those made by regular OPC Concrete with M30 Grade. The chronological changes in the geopolymeric structure upon exposure to these temperatures and their reflections on the thermal behaviour have also been explored. The SEM images indicate GPC produced by fly ash , metakaolin and silica fume, under alkaline conditions form Mineral binders that are not only non-flammable and but are also non-combustible resins and binders. Further the Observations drawn disclose that the mass and compressive strength of concrete gets reduced with increase in temperatures.


2016 ◽  
Vol 42 (1) ◽  
pp. 1254-1260 ◽  
Author(s):  
Mehmet Burhan Karakoç ◽  
İbrahim Türkmen ◽  
Müslüm Murat Maraş ◽  
Fatih Kantarci ◽  
Ramazan Demirboğa

2020 ◽  
Vol 32 ◽  
pp. 101780
Author(s):  
Shaswat Kumar Das ◽  
Syed Mohammed Mustakim ◽  
Adeyemi Adesina ◽  
Jyotirmoy Mishra ◽  
Thamer Salman Alomayri ◽  
...  

Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


Author(s):  
Lathi Karthi ◽  
Peter Cibi

Acids attack concrete by dissolving both hydrated and unhydrated cement compounds as well as calcareous aggregates and the subsequent chemical reaction forms water soluble calcium compounds which are then leached away. The aggressiveness of the reaction depends on the pH of the acidic medium and the types of salts formed. Concrete pipes made of ordinary portland cement (OPC) carrying sewage water have always the presence acidic solutions in it. They deteriorate and service life of the pipes is affected along with the increased maintenance costs and that process cause environmental impacts.  Geopolymer binders are novel binders that relies on alumina silicate rather calcium silicate bonds for structural integrity so they have been reported as being acid resistant. Those could be produced by the chemical action between alumino-silicate material such as fly ash(FA), granulated blast furnaces slag (GGBS), metakaoline or silica fume with alkaline solutions like sodium silicate or sodium hydroxide. Geopolymers show superior performance in terms of corrosion and fire resistance due to the absence of water and calcium in their structure.Utilisation of waste materials like FA and GGBS makes geopolymer    concrete (GPC) an environment friendly construction material. This review paper looks in to the effect of various acids such as sulphuric acid, acetic acid, nitric acids on durability properties of OPC specimens, GPC specimens and GPC composite specimens when immersed in acidic solutions for certain period. The performance of geopolymer is analysed by the visual inspection and studying the parameters like weight loss, loss in compressive strength and maximum depth of penetration. Keywords- Geopolymer concrete, Sodium hydroxide, sodium silicate, metakaoline, silica fume, alumina silicate


Sign in / Sign up

Export Citation Format

Share Document