scholarly journals Experimental study on axial compression behaviour of glass fibre reinforced polymer (GFRP) wrapped nano material concrete columns

Author(s):  
S. Natarajan ◽  
S. Senthil Selvan
2018 ◽  
Vol 21 (10) ◽  
pp. 1585-1594 ◽  
Author(s):  
Jin-Guang Teng ◽  
Zihao Wang ◽  
Tao Yu ◽  
Yang Zhao ◽  
Li-Juan Li

This article presents a new form of fibre-reinforced polymer-concrete-steel hybrid columns and demonstrates some of its expected advantages using results from an experimental study. These columns consist of a concrete-filled fibre-reinforced polymer tube that is internally reinforced with a high-strength steel tube and are referred to as hybrid double-tube concrete columns. The three components in hybrid double-tube concrete columns (i.e. the external fibre-reinforced polymer tube, the concrete infill and the internal high-strength steel tube) are combined in an optimal manner to deliver excellent short- and long-term performance. The experimental study included axial compression tests on eight hybrid double-tube concrete columns with a glass fibre–reinforced polymer external tube covering different glass fibre–reinforced polymer tube thicknesses and diameters as well as different high-strength steel tube diameters. The experimental results show that in hybrid double-tube concrete columns, the concrete is well confined by both the fibre-reinforced polymer tube and the high-strength steel tube, and the buckling of the high-strength steel tube is suppressed so that its high material strength can be effectively utilized, leading to excellent column performance. Due to the high yield stress of high-strength steel, the hoop stress developed to confine the core concrete is much higher than can be derived from a normal-strength steel tube, giving the use of high-strength steel in double-tube concrete columns an additional advantage.


Author(s):  
Afaq Ahmad ◽  
Mohamed Elchalakani ◽  
Muhammad Iqbal ◽  
Yimou Huang ◽  
Guowei Ma

An investigation was carried out into the structural performance of concrete columns reinforced with various shapes of glass-fibre-reinforced polymer bars and stainless-steel stirrups under concentric loading at ultimate limit state. Six square-section columns were cast to investigate the effects of different reinforcement types. The results showed failure modes depended on reinforcement material, shape and stirrup spacing. Across all specimens, steel-reinforced columns had higher loading capacity and better ductile performance, followed by L-shape and then round polymer bars. Smaller spiral spacing increased confinement efficiency and ductility and provided sufficient restraint against longitudinal polymer bar buckling. Finite-element models were also calibrated, and the results were in close agreement with experimental measurements. Based on the calibrated models, numerical parameters were studied to understand further the behavior of composite columns reinforced with glass-fibre-reinforced polymer.


Sign in / Sign up

Export Citation Format

Share Document