Molecular docking and dynamics simulation study of telomerase inhibitors as potential anti-cancer agents

Author(s):  
D.R. Sherin ◽  
T.K. Manojkumar ◽  
R.C. Prakash ◽  
V.N. Sobha
2020 ◽  
Author(s):  
Sherin D R ◽  
Thanathu Krishnan Manojkumar ◽  
R. Prakash Chandran ◽  
Sobha V Nair

<p>Normal cells’ genomic identity is protected by telomeres and sometimes chromosomal instability was observed due to shortening of telomerase because of successive cell divisions. Reports indicate that telomerase length is crucial in determining telomerase activity which in turn leads to cancer initiation. It is reported that telomere length regulation has been identified as a plausible strategy for cancer diagnostics and treatment. In the present MS, we explored the telomerase inhibitory activity of catechin analogues and it’s oligomers using computational methods. The structural properties of different ligands discussed in the MS were computed using density functional theory. Conformational effect of different chromene subunit such as 2R, 3R conformations were explored using computational methods. The stereochemical contributions to receptor binding such as intra ligand π-interactions of these ligands were also investigated. We herein propose that these stereochemical aspects of catechins and their oligomers as the most vital factor deciding the effective binding with the N-terminal domain of telomerase which is an efficient strategy in cancer therapy. </p>


2020 ◽  
Author(s):  
Sherin D R ◽  
Thanathu Krishnan Manojkumar ◽  
R. Prakash Chandran ◽  
Sobha V Nair

<p>Normal cells’ genomic identity is protected by telomeres and sometimes chromosomal instability was observed due to shortening of telomerase because of successive cell divisions. Reports indicate that telomerase length is crucial in determining telomerase activity which in turn leads to cancer initiation. It is reported that telomere length regulation has been identified as a plausible strategy for cancer diagnostics and treatment. In the present MS, we explored the telomerase inhibitory activity of catechin analogues and it’s oligomers using computational methods. The structural properties of different ligands discussed in the MS were computed using density functional theory. Conformational effect of different chromene subunit such as 2R, 3R conformations were explored using computational methods. The stereochemical contributions to receptor binding such as intra ligand π-interactions of these ligands were also investigated. We herein propose that these stereochemical aspects of catechins and their oligomers as the most vital factor deciding the effective binding with the N-terminal domain of telomerase which is an efficient strategy in cancer therapy. </p>


2018 ◽  
Vol 18 (18) ◽  
pp. 1572-1587
Author(s):  
Nehad A. Abdel Latif ◽  
Rasha Z. Batran ◽  
Salwa F. Mohamed ◽  
Mohammed A. Khedr ◽  
Mohamed I. Kobeasy ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11171
Author(s):  
Neha Srivastava ◽  
Prekshi Garg ◽  
Prachi Srivastava ◽  
Prahlad Kishore Seth

Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document